Multimodal Biometric Authentication Using Camera-Based PPG and Fingerprint Fusion
- URL: http://arxiv.org/abs/2412.05660v1
- Date: Sat, 07 Dec 2024 14:09:40 GMT
- Title: Multimodal Biometric Authentication Using Camera-Based PPG and Fingerprint Fusion
- Authors: Xue Xian Zheng, M. M. Ur Rahma, Bilal Taha, Mudassir Masood, Dimitrios Hatzinakos, Tareq Al-Naffouri,
- Abstract summary: This paper presents a multimodal biometric system that integrates PPG signals extracted from videos with fingerprint data to enhance the accuracy of user verification.
System requires users to place their fingertip on the camera lens for a few seconds, allowing the capture and processing of unique biometric characteristics.
- Score: 10.360896128201237
- License:
- Abstract: Camera-based photoplethysmography (PPG) obtained from smartphones has shown great promise for personalized healthcare and secure authentication. This paper presents a multimodal biometric system that integrates PPG signals extracted from videos with fingerprint data to enhance the accuracy of user verification. The system requires users to place their fingertip on the camera lens for a few seconds, allowing the capture and processing of unique biometric characteristics. Our approach employs a neural network with two structured state-space model (SSM) encoders to manage the distinct modalities. Fingerprint images are transformed into pixel sequences, and along with segmented PPG waveforms, they are input into the encoders. A cross-modal attention mechanism then extracts refined feature representations, and a distribution-oriented contrastive loss function aligns these features within a unified latent space. Experimental results demonstrate the system's superior performance across various evaluation metrics in both single-session and dual-session authentication scenarios.
Related papers
- Joint Identity Verification and Pose Alignment for Partial Fingerprints [33.05877729161858]
We propose a novel framework for joint identity verification and pose alignment of partial fingerprint pairs.
Our method achieves state-of-the-art performance in both partial fingerprint verification and relative pose estimation.
arXiv Detail & Related papers (2024-05-07T02:45:50Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
Bimodal objects serve as a visual form to embed information that can be easily recognized by vision systems.
Neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first de-blur and then binarize the images in a real-time manner.
We propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space.
We also develop an efficient integration method to propagate this binary image to high frame rate binary video.
arXiv Detail & Related papers (2024-02-20T01:43:51Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Compact multi-scale periocular recognition using SAFE features [63.48764893706088]
We present a new approach for periocular recognition based on the Symmetry Assessment by Feature Expansion (SAFE) descriptor.
We use the sclera center as single key point for feature extraction, highlighting the object-like identity properties that concentrates to this point unique of the eye.
arXiv Detail & Related papers (2022-10-18T11:46:38Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - Benchmarking Joint Face Spoofing and Forgery Detection with Visual and
Physiological Cues [81.15465149555864]
We establish the first joint face spoofing and detection benchmark using both visual appearance and physiological r cues.
To enhance the r periodicity discrimination, we design a two-branch physiological network using both facial powerful rtemporal signal map and its continuous wavelet transformed counterpart as inputs.
arXiv Detail & Related papers (2022-08-10T15:41:48Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - Iris Recognition Based on SIFT Features [63.07521951102555]
We use the Scale Invariant Feature Transformation (SIFT) for recognition using iris images.
We extract characteristic SIFT feature points in scale space and perform matching based on the texture information around the feature points using the SIFT operator.
We also show the complement between the SIFT approach and a popular matching approach based on transformation to polar coordinates and Log-Gabor wavelets.
arXiv Detail & Related papers (2021-10-30T04:55:33Z) - FDeblur-GAN: Fingerprint Deblurring using Generative Adversarial Network [22.146795282680667]
We propose a fingerprint deblurring model FDe-GAN, based on the conditional Generative Adversarial Networks (cGANs) and multi-stage framework of the stack GAN.
We integrate two auxiliary sub-networks into the model for the deblurring task.
We achieve an accuracy of 95.18% on our fingerprint database for the task of matching deblurred and ground truth fingerprints.
arXiv Detail & Related papers (2021-06-21T18:37:20Z) - Seeing Red: PPG Biometrics Using Smartphone Cameras [20.911850979477236]
We propose a system that enables photoplethysmogram-based authentication by using a smartphone camera.
PPG signals are obtained by recording a video from the camera as users are resting their finger on top of the camera lens.
arXiv Detail & Related papers (2020-04-15T13:50:36Z) - Dense Registration and Mosaicking of Fingerprints by Training an
End-to-End Network [36.50244665233824]
We train an end-to-end network to output pixel-wise displacement field between two fingerprints.
We also propose a fingerprint mosaicking method based on optimal seam selection.
Our registration method outperforms previous dense registration methods in accuracy and efficiency.
arXiv Detail & Related papers (2020-04-13T14:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.