論文の概要: Leveraging Time-Series Foundation Model for Subsurface Well Logs Prediction and Anomaly Detection
- arxiv url: http://arxiv.org/abs/2412.05681v1
- Date: Sat, 07 Dec 2024 15:23:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:30.917868
- Title: Leveraging Time-Series Foundation Model for Subsurface Well Logs Prediction and Anomaly Detection
- Title(参考訳): 地下坑井検層予測と異常検出のための時系列基礎モデルの構築
- Authors: Ardiansyah Koeshidayatullah, Abdulrahman Al-Fakih, SanLinn Ismael Kaka,
- Abstract要約: ボーリング・ウェルログデータ中の異常を予測・検出するための時系列基礎モデルを提案する。
提案モデルでは,R2が最大87%,平均絶対パーセンテージ誤差(MAPE)が1.95%と高い性能を示した。
このモデルのゼロショット能力は、ドリルの危険性や予期せぬ地質学的形成などの微妙で重要な異常を93%の精度で識別することに成功した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rise in energy demand highlights the importance of suitable subsurface storage, requiring detailed and accurate subsurface characterization often reliant on high-quality borehole well log data. However, obtaining complete well-log data is costly and time-consuming, with missing data being common due to borehole conditions or tool errors. While machine learning and deep learning algorithms have been implemented to address these issues, they often fail to capture the intricate, nonlinear relationships and long-term dependencies in complex well log sequences. Additionally, prior AI-driven models typically require retraining when introduced to new datasets and are constrained to deployment in the same basin. In this study, we explored and evaluated the potential of a time-series foundation model leveraging transformer architecture and a generative pre-trained approach for predicting and detecting anomalies in borehole well log data. Specifically, we fine-tuned and adopted the TimeGPT architecture to forecast key log responses and detect anomalies with high accuracy. Our proposed model demonstrated excellent performance, achieving R2 of up to 87% and a mean absolute percentage error (MAPE) as low as 1.95%. Additionally, the model's zero-shot capability successfully identified subtle yet critical anomalies, such as drilling hazards or unexpected geological formations, with an overall accuracy of 93%. The model represents a significant advancement in predictive accuracy and computational efficiency, enabling zero-shot inference through fine-tuning. Its application in well-log prediction enhances operational decision-making while reducing risks associated with subsurface exploration. These findings demonstrate the model's potential to transform well-log data analysis, particularly in complex geological settings.
- Abstract(参考訳): エネルギー需要の増大は、適切な地下貯蔵の重要性を強調し、しばしば高品質のボーアホール井戸ログデータに依存する詳細で正確な地下のキャラクタリゼーションを必要とする。
しかし、完全な well-log データを取得するにはコストがかかり、時間を要する。
機械学習とディープラーニングアルゴリズムはこれらの問題に対処するために実装されているが、複雑なウェルログシーケンスにおける複雑で非線形な関係や長期的な依存関係をキャプチャできないことが多い。
さらに、従来のAI駆動モデルでは、新しいデータセットの導入時に再トレーニングが必要で、同じバウンダでのデプロイメントに制約が課される。
本研究では, 変圧器アーキテクチャを利用した時系列基礎モデルの可能性と, ボーリングホール坑井ログデータの異常を予測・検出するための生成事前学習手法について検討した。
具体的には、キーログ応答の予測と高精度な異常検出のために、TimeGPTアーキテクチャを微調整し、採用した。
提案モデルでは,R2が最大87%,平均絶対パーセンテージ誤差(MAPE)が1.95%と高い性能を示した。
さらに、このモデルのゼロショット能力は、ドリルの危険性や予期せぬ地質構造などの微妙で重要な異常を93%の精度で識別することに成功した。
このモデルは予測精度と計算効率の大幅な向上を示し、微調整によるゼロショット推論を可能にする。
ウェルログ予測へのその応用は、地下探査に伴うリスクを低減しつつ、運用上の意思決定を促進する。
これらの結果は、特に複雑な地質環境において、よくログされたデータ分析を変換する可能性を示している。
関連論文リスト
- Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
本稿では,オフラインとオンラインのフェーズからなる実践的なワークフローを提案する。
オフラインフェーズには、不確実な事前ニアウェルジオモデルのトレーニングと構築が含まれている。
オンラインフェーズでは、フレキシブルな反復アンサンブルスムーズ(FlexIES)を使用して、極深電磁データのリアルタイム同化を行う。
論文 参考訳(メタデータ) (2022-10-27T15:38:26Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements [0.0]
深部電磁法(EM)測定における深部学習モデルの近似特性と関連するモデル誤差の影響について検討した。
フォワードモデルとしてディープニューラルネットワーク(DNN)を使用することで、数秒で数千のモデル評価を実行できます。
本稿では, モデル誤差を無視しながら, EM測定の逆転に伴う問題を明らかにする数値計算結果を提案する。
論文 参考訳(メタデータ) (2022-05-25T11:44:48Z) - Deep vs. Shallow Learning: A Benchmark Study in Low Magnitude Earthquake
Detection [0.0]
弾性ネット駆動データマイニングによる4つの機能の追加により,既存のロジスティック回帰モデルを構築した。
我々は,Groningenデータに基づいて事前学習したディープ(CNN)モデルに対する拡張ロジスティック回帰モデルの性能を,段階的に増加する雑音-信号比に基づいて評価する。
各比について、我々のロジスティック回帰モデルがすべての地震を正確に検出するのに対し、深部モデルは地震の約20%を検出できないことを発見した。
論文 参考訳(メタデータ) (2022-05-01T17:59:18Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC)は、科学応用においてエミュレータを設計するための新しいディープラーニングアプローチである。
また,LbCは広く適応された損失関数の選択に対して,一般化誤差を大幅に改善することを示した。
LbCは、小さなデータレギュレータでも高品質なエミュレータを実現し、さらに重要なことは、明確な事前条件なしで固有のノイズ構造を復元する。
論文 参考訳(メタデータ) (2020-05-05T16:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。