Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
- URL: http://arxiv.org/abs/2412.05723v1
- Date: Sat, 07 Dec 2024 18:49:27 GMT
- Title: Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
- Authors: Haizhou Shi, Yibin Wang, Ligong Han, Huan Zhang, Hao Wang,
- Abstract summary: Training-Free Bayesianization(TFB) transforms existing off-the-shelf trained LoRA adapters into Bayesian ones without additional training.<n>We show that TFB achieves superior uncertainty estimation and generalization compared to existing methods.
- Score: 18.98810667057975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the uncertainty of responses of Large Language Models~(LLMs) remains a critical challenge. While recent Bayesian methods have demonstrated effectiveness in quantifying uncertainty through low-rank weight updates, they typically require complex fine-tuning or post-training procedures. In this paper, we propose Training-Free Bayesianization~(TFB), a novel framework that transforms existing off-the-shelf trained LoRA adapters into Bayesian ones without additional training. TFB systematically searches for the maximally acceptable level of variance in the weight posterior, constrained within a family of low-rank isotropic Gaussian distributions. We theoretically demonstrate that under mild conditions, this search process is equivalent to variational inference for the weights. Through comprehensive experiments, we show that TFB achieves superior uncertainty estimation and generalization compared to existing methods while eliminating the need for complex training procedures. Code will be available at https://github.com/Wang-ML-Lab/bayesian-peft.
Related papers
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
Current deep learning algorithms usually solve for the optimal classifier by emphimplicitly estimating the posterior probabilities.<n>This simple methodology has been proven effective for meticulously balanced academic benchmark datasets.<n>However, it is not applicable to the long-tailed data distributions in the real world.<n>This paper presents a novel approach (BAPE) that provides a more precise theoretical estimation of the data distributions.
arXiv Detail & Related papers (2025-06-29T15:12:50Z) - BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models [13.953203993774233]
Large Language Models (LLMs) often suffer from overconfidence during inference.
We propose Bayesian Low-Rank Adaptation by Backpropagation (BLoB), an algorithm that continuously and jointly adjusts both the mean and covariance of LLM parameters.
Our results verify the effectiveness of BLoB in terms of generalization and uncertainty estimation, when evaluated on both in-distribution and out-of-distribution data.
arXiv Detail & Related papers (2024-06-17T15:55:38Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
Learning under Distribution Shift [19.945634052291542]
We evaluate modern BDL algorithms on real-world datasets from the WILDS collection containing challenging classification and regression tasks.
We compare the algorithms on a wide range of large, convolutional and transformer-based neural network architectures.
We provide the first systematic evaluation of BDL for fine-tuning large pre-trained models.
arXiv Detail & Related papers (2023-06-21T14:36:03Z) - Deep Anti-Regularized Ensembles provide reliable out-of-distribution
uncertainty quantification [4.750521042508541]
Deep ensemble often return overconfident estimates outside the training domain.
We show that an ensemble of networks with large weights fitting the training data are likely to meet these two objectives.
We derive a theoretical framework for this approach and show that the proposed optimization can be seen as a "water-filling" problem.
arXiv Detail & Related papers (2023-04-08T15:25:12Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
In few-shot object detection (FSOD), the two-step training paradigm is widely adopted to mitigate the severe sample imbalance.
Unfortunately, the extreme data scarcity aggravates the proposal distribution bias, hindering the RoI head from evolving toward novel classes.
We introduce a simple yet effective proposal distribution calibration (PDC) approach to neatly enhance the localization and classification abilities of the RoI head.
arXiv Detail & Related papers (2022-12-15T05:09:11Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - PLATON: Pruning Large Transformer Models with Upper Confidence Bound of
Weight Importance [114.1541203743303]
We propose PLATON, which captures the uncertainty of importance scores by upper confidence bound (UCB) of importance estimation.
We conduct extensive experiments with several Transformer-based models on natural language understanding, question answering and image classification.
arXiv Detail & Related papers (2022-06-25T05:38:39Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Stochastic Training is Not Necessary for Generalization [57.04880404584737]
It is widely believed that the implicit regularization of gradient descent (SGD) is fundamental to the impressive generalization behavior we observe in neural networks.
In this work, we demonstrate that non-stochastic full-batch training can achieve strong performance on CIFAR-10 that is on-par with SGD.
arXiv Detail & Related papers (2021-09-29T00:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.