A Collaborative Multi-Agent Approach to Retrieval-Augmented Generation Across Diverse Data
- URL: http://arxiv.org/abs/2412.05838v1
- Date: Sun, 08 Dec 2024 07:18:19 GMT
- Title: A Collaborative Multi-Agent Approach to Retrieval-Augmented Generation Across Diverse Data
- Authors: Aniruddha Salve, Saba Attar, Mahesh Deshmukh, Sayali Shivpuje, Arnab Mitra Utsab,
- Abstract summary: Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs)
Traditional RAG systems typically use a single-agent architecture to handle query generation, data retrieval, and response synthesis.
This paper proposes a multi-agent RAG system to address these limitations.
- Score: 0.0
- License:
- Abstract: Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by incorporating external, domain-specific data into the generative process. While LLMs are highly capable, they often rely on static, pre-trained datasets, limiting their ability to integrate dynamic or private data. Traditional RAG systems typically use a single-agent architecture to handle query generation, data retrieval, and response synthesis. However, this approach becomes inefficient when dealing with diverse data sources, such as relational databases, document stores, and graph databases, often leading to performance bottlenecks and reduced accuracy. This paper proposes a multi-agent RAG system to address these limitations. Specialized agents, each optimized for a specific data source, handle query generation for relational, NoSQL, and document-based systems. These agents collaborate within a modular framework, with query execution delegated to an environment designed for compatibility across various database types. This distributed approach enhances query efficiency, reduces token overhead, and improves response accuracy by ensuring that each agent focuses on its specialized task. The proposed system is scalable and adaptable, making it ideal for generative AI workflows that require integration with diverse, dynamic, or private data sources. By leveraging specialized agents and a modular execution environment, the system provides an efficient and robust solution for handling complex, heterogeneous data environments in generative AI applications.
Related papers
- Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.
A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.
To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
arXiv Detail & Related papers (2025-01-25T14:24:50Z) - Dynamic Multi-Agent Orchestration and Retrieval for Multi-Source Question-Answer Systems using Large Language Models [0.0]
We propose a methodology that combines several advanced techniques in Large Language Model (LLM) retrieval to support the development of robust, multi-source question-answer systems.
This methodology is designed to integrate information from diverse data sources, through a coordinated multi-agent orchestration and dynamic retrieval approach.
Our results indicate that this approach enhances response accuracy and relevance, offering a versatile and scalable framework for developing question-answer systems.
arXiv Detail & Related papers (2024-12-23T20:28:20Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
Recent studies have demonstrated that leveraging the Retrieval-Augmented Generation framework, combined with Knowledge Graphs, robustly enhances the reasoning capabilities of Large language models.
We introduce a Multi-objective Multi-Armed Bandit enhanced RAG framework, supported by multiple retrieval methods with diverse capabilities.
Our method significantly outperforms baseline methods in non-stationary settings while achieving state-of-the-art performance in stationary environments.
arXiv Detail & Related papers (2024-12-10T15:56:03Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions.
We propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user-query routing, data-retrieval and custom prompting for question-answering capabilities from Enterprise-data tables.
Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains.
arXiv Detail & Related papers (2024-05-07T02:49:59Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning [98.26836657967162]
textbfAgentOhana aggregates agent trajectories from distinct environments, spanning a wide array of scenarios.
textbfxLAM-v0.1, a large action model tailored for AI agents, demonstrates exceptional performance across various benchmarks.
arXiv Detail & Related papers (2024-02-23T18:56:26Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
We propose a unified coordinating framework to efficiently utilize existing ML-based agents.
We show that it can effectively utilize different ML-based agents and find better configurations with 1.414.1X speedups on the workload execution time.
arXiv Detail & Related papers (2023-03-10T05:27:23Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - A Federated Data-Driven Evolutionary Algorithm [10.609815608017065]
Existing data-driven evolutionary optimization algorithms require that all data are centrally stored.
This paper proposes a federated data-driven evolutionary optimization framework that is able to perform data driven optimization when the data is distributed on multiple devices.
arXiv Detail & Related papers (2021-02-16T17:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.