Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2501.15228v1
- Date: Sat, 25 Jan 2025 14:24:50 GMT
- Title: Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
- Authors: Yiqun Chen, Lingyong Yan, Weiwei Sun, Xinyu Ma, Yi Zhang, Shuaiqiang Wang, Dawei Yin, Yiming Yang, Jiaxin Mao,
- Abstract summary: Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.<n>A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.<n>To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
- Score: 51.54046200512198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.
Related papers
- UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities [53.76854299076118]
UniversalRAG is a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities.
We propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it.
We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
arXiv Detail & Related papers (2025-04-29T13:18:58Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAG is a novel Hierarchical Multi-agent Multimodal RAG framework.
It pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data.
arXiv Detail & Related papers (2025-04-13T06:55:33Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3PO is a proxy-centric framework that facilitates communication between retrievers and large language models.
Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline.
arXiv Detail & Related papers (2025-02-10T07:04:32Z) - Talk to Right Specialists: Routing and Planning in Multi-agent System for Question Answering [47.29580414645626]
RopMura is a novel multi-agent system that integrates multiple knowledge bases into a unified RAG-based agent.<n>RopMura features two key components: a router that intelligently selects the most relevant agents based on knowledge boundaries and a planner that decomposes complex multi-hop queries into manageable steps.
arXiv Detail & Related papers (2025-01-14T03:25:26Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
Large Language Models (LLMs) are essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.<n>Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses.<n>To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG)<n>MAIN-RAG is a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents.
arXiv Detail & Related papers (2024-12-31T08:07:26Z) - XRAG: eXamining the Core -- Benchmarking Foundational Components in Advanced Retrieval-Augmented Generation [37.78210992036775]
Retrieval-augmented generation (RAG) synergizes the retrieval of pertinent data with the generative capabilities of Large Language Models (LLMs)<n>We introduce XRAG, an open-source, modular that facilitates exhaustive evaluation of the performance of foundational components of advanced RAG modules.
arXiv Detail & Related papers (2024-12-20T03:37:07Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs)
Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents.
This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea.
arXiv Detail & Related papers (2024-06-07T16:59:38Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
retrieval-augmented generation (RAG) has attracted considerable research attention.
Existing RAG toolkits are often heavy and inflexibly, failing to meet the customization needs of researchers.
Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching.
We develop two simple but quite effective regulators which efficiently encode the message output to automatically contextualize and aggregate cross-modal representations.
Experiments on MSCOCO and Flickr30K datasets validate that they can bring an impressive and consistent R@1 gain on multiple models.
arXiv Detail & Related papers (2023-03-23T15:42:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.