論文の概要: Understanding the Impact of Graph Reduction on Adversarial Robustness in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2412.05883v1
- Date: Sun, 08 Dec 2024 10:22:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:39.235753
- Title: Understanding the Impact of Graph Reduction on Adversarial Robustness in Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークの逆ロバスト性に及ぼすグラフ削減の影響の理解
- Authors: Kerui Wu, Ka-Ho Chow, Wenqi Wei, Lei Yu,
- Abstract要約: グラフニューラルネットワーク(GNN)は、大規模グラフデータから学習するためにますます人気が高まっている。
本稿では,グラフ縮小技術,特にグラフ粗大化とスパーシフィケーションが,GNNの敵攻撃に対する堅牢性に与える影響を実証研究する。
- 参考スコア(独自算出の注目度): 13.014096424911283
- License:
- Abstract: As Graph Neural Networks (GNNs) become increasingly popular for learning from large-scale graph data across various domains, their susceptibility to adversarial attacks when using graph reduction techniques for scalability remains underexplored. In this paper, we present an extensive empirical study to investigate the impact of graph reduction techniques, specifically graph coarsening and sparsification, on the robustness of GNNs against adversarial attacks. Through extensive experiments involving multiple datasets and GNN architectures, we examine the effects of four sparsification and six coarsening methods on the poisoning attacks. Our results indicate that, while graph sparsification can mitigate the effectiveness of certain poisoning attacks, such as Mettack, it has limited impact on others, like PGD. Conversely, graph coarsening tends to amplify the adversarial impact, significantly reducing classification accuracy as the reduction ratio decreases. Additionally, we provide a novel analysis of the causes driving these effects and examine how defensive GNN models perform under graph reduction, offering practical insights for designing robust GNNs within graph acceleration systems.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,さまざまな領域にわたる大規模グラフデータから学習するために人気が高まっている。
本稿では,グラフ削減技術,特にグラフ粗大化とスペーサー化が,GNNの敵攻撃に対する堅牢性に与える影響について検討する。
複数のデータセットとGNNアーキテクチャを含む広範囲な実験を通して、4つのスパーシフィケーションと6つの粗大化法が中毒攻撃に与える影響を調べた。
以上の結果から,グラフスペーサー化はMettackなどの特定の中毒攻撃の有効性を緩和するが,PGDのような他の攻撃には限定的な影響を及ぼすことが示された。
逆に、グラフ粗化は敵の影響を増幅し、還元比が減少するにつれて分類精度を著しく低下させる傾向にある。
さらに,これらの効果を誘発する要因を新たに分析し,グラフ化の下での防御的GNNモデルの性能を検証し,グラフ加速システム内で堅牢なGNNを設計するための実用的な知見を提供する。
関連論文リスト
- Explainable Malware Detection through Integrated Graph Reduction and Learning Techniques [2.464148828287322]
制御フローグラフと関数コールグラフは、プログラム実行の詳細な理解を提供する上で重要なものとなっている。
これらのグラフベースの表現は、グラフニューラルネットワーク(GNN)と組み合わせることで、高性能なマルウェア検出器の開発において有望であることが示されている。
本稿では,グラフサイズを削減し,GNN出力の解釈可能性を高めるために最先端のGNNExplainerを適用し,これらの問題に対処する。
論文 参考訳(メタデータ) (2024-12-04T18:59:45Z) - On the Robustness of Graph Reduction Against GNN Backdoor [9.377257547233919]
グラフニューラルネットワーク(GNN)は,グラフ構造化データ学習の有効性から,さまざまな領域で人気を集めている。
バックドア中毒は、現実世界の応用に深刻な脅威をもたらす。
粗大化やスパシフィケーションを含むグラフ削減技術は、大規模グラフ上でのGNNトレーニングを加速する有効な方法として現れている。
論文 参考訳(メタデータ) (2024-07-02T17:08:38Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
グラフニューラルネットワーク(GNN)は、さまざまな分野でますます普及している。
個人データの不正利用に関する懸念が高まっている。
近年の研究では、このような誤用から画像データを保護する効果的な方法として、知覚不能な毒殺攻撃が報告されている。
本稿では,グラフデータの不正使用に対する保護のためにGraphCloakを導入する。
論文 参考訳(メタデータ) (2023-10-11T00:50:55Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Exploring High-Order Structure for Robust Graph Structure Learning [33.62223306095631]
グラフニューラルネットワーク(GNN)は、敵の攻撃に対して脆弱である。すなわち、知覚不能な構造摂動は、GNNを騙して誤った予測をすることができる。
本稿では,特徴の滑らかさの観点から,グラフに対する逆攻撃を解析する。
本稿では,高次構造情報をグラフ構造学習に組み込む新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-22T07:03:08Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。