論文の概要: Materials-Discovery Workflows Guided by Symbolic Regression: Identifying Acid-Stable Oxides for Electrocatalysis
- arxiv url: http://arxiv.org/abs/2412.05947v1
- Date: Sun, 08 Dec 2024 14:09:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:53:38.859134
- Title: Materials-Discovery Workflows Guided by Symbolic Regression: Identifying Acid-Stable Oxides for Electrocatalysis
- Title(参考訳): シンボリック回帰による物質発見ワークフロー:酸安定酸化物の電気触媒への応用
- Authors: Akhil S. Nair, Lucas Foppa, Matthias Scheffler,
- Abstract要約: 本研究では,真独立性スクリーニングとスペーサー化演算子(SISSO)のシンボリック・レグレッション・アプローチに基づくALワークフローを開発する。
我々は、平均予測とその不確実性を定量化するためにSISSOモデルのアンサンブルを訓練し、アクティブラーニングにおけるSISSOの使用を可能にする。
高品質DFT-HSE06計算を用いて酸性安定酸化物を分離し,SISSO誘導ALワークフローを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The efficiency of active learning (AL) approaches to identify materials with desired properties relies on the knowledge of a few parameters describing the property. However, these parameters are unknown if the property is governed by a high intricacy of many atomistic processes. Here, we develop an AL workflow based on the sure-independence screening and sparsifying operator (SISSO) symbolic-regression approach. SISSO identifies the few, key parameters correlated with a given materials property via analytical expressions, out of many offered primary features. Crucially, we train ensembles of SISSO models in order to quantify mean predictions and their uncertainty, enabling the use of SISSO in AL. By combining bootstrap sampling to obtain training datasets with Monte-Carlo feature dropout, the high prediction errors observed by a single SISSO model are improved. Besides, the feature dropout procedure alleviates the overconfidence issues observed in the widely used bagging approach. We demonstrate the SISSO-guided AL workflow by identifying acid-stable oxides for water splitting using high-quality DFT-HSE06 calculations. From a pool of 1470 materials, 12 acid-stable materials are identified in only 30 AL iterations. The materials property maps provided by SISSO along with the uncertainty estimates reduce the risk of missing promising portions of the materials space that were overlooked in the initial, possibly biased dataset.
- Abstract(参考訳): アクティブラーニング(AL)アプローチの有効性は、その特性を記述するいくつかのパラメータの知識に依存している。
しかし、これらのパラメータは、その性質が多くの原子論過程の高度な複雑さによって支配されているかどうかは不明である。
本稿では,真独立性スクリーニングとスペーサー化演算子(SISSO)のシンボリック・レグレッション・アプローチに基づくALワークフローを開発する。
SISSOは、提供された多くの主要な特徴のうち、分析式を通して与えられた材料特性と相関する数少ないキーパラメータを識別する。
重要なことは、平均予測とその不確実性を定量化するためにSISSOモデルのアンサンブルを訓練し、ALにおけるSISSOの使用を可能にする。
ブートストラップサンプリングとトレーニングデータセットとモンテカルロ特徴ドロップアウトを組み合わせることにより、単一のSISSOモデルで観測される高い予測誤差が改善される。
さらに、機能ドロップアウト手順は、広く使われているバッグングアプローチで見られる過信の問題を軽減する。
高品質DFT-HSE06計算を用いて酸性安定酸化物を分離し,SISSO誘導ALワークフローを実証した。
1470の物質のプールから、わずか30AL反復で12の酸安定物質が同定される。
SISSOによって提供される材料資産地図は、不確実性の推定とともに、初期の偏見のあるデータセットで見落とされた材料空間の有望な部分の欠落のリスクを減少させる。
関連論文リスト
- Predicting and Accelerating Nanomaterials Synthesis Using Machine Learning Featurization [0.0]
反射型高エネルギー電子回折データの特徴抽出と機械学習による一般化を行う。
専門家ラベル付きデータの小さなセット(10)で定量的に予測関係を確立し、その後に成長したサンプルでかなりの時間を節約した。
これらの予測は、未解決の試行を回避し、後続のキャラクタリゼーションを減らし、材料合成の制御分解能を改善するためのガイダンスを提供する。
論文 参考訳(メタデータ) (2024-09-12T14:03:55Z) - Targeting the partition function of chemically disordered materials with a generative approach based on inverse variational autoencoders [0.0]
そこで本研究では,生成機械学習を用いて特性評価を行う手法を提案する。
本手法では,エンコーダとデコーダの逆の役割を持つ特定の種類の変分オートエンコーダを用いる。
本稿では, (U, Pu)O2混合酸化物燃料における点欠陥生成エネルギーと濃度の計算によるアプローチについて述べる。
論文 参考訳(メタデータ) (2024-08-27T10:05:37Z) - Accelerating Drug Safety Assessment using Bidirectional-LSTM for SMILES Data [0.0]
Bi-Directional Long Short Term Memory (BiLSTM) は、入力分子配列を処理するリカレントニューラルネットワーク(RNN)の変種である。
提案した研究は、SMILES文字列にコードされたシーケンシャルパターンを理解することを目的としており、それによって分子の毒性を予測する。
論文 参考訳(メタデータ) (2024-07-08T18:12:11Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Machine learning on DNA-encoded library count data using an
uncertainty-aware probabilistic loss function [1.5559232742666467]
本稿では, 個々の分子のDEL富化を, 独自の負の対数類似損失関数を用いて学習するための回帰的アプローチを示す。
このアプローチは、CAIXに対してスクリーニングされた108k化合物のデータセットと、sEHとSIRT2に対してスクリーニングされた5.7M化合物のデータセットについて説明する。
論文 参考訳(メタデータ) (2021-08-27T19:37:06Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
本稿では,データセットから化学的に間違ったエントリを除去するための,機械学習に基づく無支援アプローチを提案する。
その結果,クリーン化およびバランスの取れたデータセットでトレーニングしたモデルの予測精度が向上した。
論文 参考訳(メタデータ) (2021-02-02T09:34:34Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - A Novel Approach to Radiometric Identification [68.8204255655161]
本稿では,CAPoNeFの特徴工学的手法を用いて,高精度なラジオメトリック同定が可能であることを実証する。
SDRで収集した実験データに基づいて,基本的なML分類アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-12-02T10:54:44Z) - Towards constraining warm dark matter with stellar streams through
neural simulation-based inference [7.608718235345664]
Amortized Approximate Likelihood Ratios (AALR) に基づく確率自由ベイズ推論パイプラインを導入する。
本手法は、暗黒物質サブハローによってのみ恒星の流れが摂動される単純化された場合に適用する。
論文 参考訳(メタデータ) (2020-11-30T15:53:43Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z) - Reintroducing Straight-Through Estimators as Principled Methods for
Stochastic Binary Networks [85.94999581306827]
2重みとアクティベーションを持つニューラルネットワークのトレーニングは、勾配の欠如と離散重みよりも最適化が難しいため、難しい問題である。
多くの実験結果が経験的ストレートスルー(ST)アプローチで達成されている。
同時に、ST法はベルヌーイ重みを持つバイナリネットワーク(SBN)モデルにおける推定子として真に導出することができる。
論文 参考訳(メタデータ) (2020-06-11T23:58:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。