Does RLHF Scale? Exploring the Impacts From Data, Model, and Method
- URL: http://arxiv.org/abs/2412.06000v1
- Date: Sun, 08 Dec 2024 17:19:48 GMT
- Title: Does RLHF Scale? Exploring the Impacts From Data, Model, and Method
- Authors: Zhenyu Hou, Pengfan Du, Yilin Niu, Zhengxiao Du, Aohan Zeng, Xiao Liu, Minlie Huang, Hongning Wang, Jie Tang, Yuxiao Dong,
- Abstract summary: This study explores the scaling properties of Reinforcement Learning from Human Feedback in Large Language Models.<n>We analyze key components in the RLHF framework--model size, data composition, and inference budget--and their impacts on performance.
- Score: 83.53178716807776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the scaling properties of Reinforcement Learning from Human Feedback (RLHF) in Large Language Models (LLMs). Although RLHF is considered an important step in post-training of LLMs, its scaling potential is still largely unknown. We systematically analyze key components in the RLHF framework--model size, data composition, and inference budget--and their impacts on performance. Our findings show that increasing data diversity and volume improves reward model performance, helping process-supervision models scale better. For policy training, more response samples per prompt boost performance initially but quickly plateau. And larger reward models offer modest gains in policy training. In addition, larger policy models benefit less from RLHF with a fixed reward model. Overall, RLHF scales less efficiently than pretraining, with diminishing returns from additional computational resources. Based on these observations, we propose strategies to optimize RLHF performance within computational limits.
Related papers
- Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.
We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback [12.7099489697479]
We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking.
We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness.
arXiv Detail & Related papers (2025-03-28T08:26:41Z) - How to Evaluate Reward Models for RLHF [51.31240621943791]
We introduce a new benchmark for reward models that quantifies their ability to produce strong language models through RLHF (Reinforcement Learning from Human Feedback)
We build a predictive model of downstream LLM performance by evaluating the reward model on proxy tasks.
We launch an end-to-end RLHF experiment on a large-scale crowdsourced human preference platform to view real reward model downstream performance as ground truth.
arXiv Detail & Related papers (2024-10-18T21:38:21Z) - Parameter Efficient Reinforcement Learning from Human Feedback [27.687265760622918]
Reinforcement Learning from Human Feedback (RLHF) effectively aligns pretrained Large Language and Vision-Language Models with human preferences.
To alleviate some of the computational burden of fine-tuning, efficient methods, like LoRA were introduced.
We benchmark the PE-RLHF setup on six diverse datasets spanning summarization, harmless/helpful response generation, UI automation, and visual question answering.
arXiv Detail & Related papers (2024-03-15T21:43:46Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
Reinforcement Learning from Human Feedback (RLHF) is a technique that aligns language models closely with human-centric values.
It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective.
This paper delves into these issues, leveraging the theoretical insights to design improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS)
arXiv Detail & Related papers (2024-01-29T17:43:42Z) - The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback [5.037876196534672]
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings.
In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions.
arXiv Detail & Related papers (2023-10-31T21:52:41Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
We focus on two prevalent methods used to align large language models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods.
Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement.
arXiv Detail & Related papers (2023-10-25T16:52:00Z) - The History and Risks of Reinforcement Learning and Human Feedback [0.16843915833103415]
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models easier to use and more effective.
A core piece of the RLHF process is the training and utilization of a model of human preferences that acts as a reward function for optimization.
RLHF reward models are often cited as being central to achieving performance, yet very few descriptors of capabilities, evaluations, training methods, or open-source models exist.
arXiv Detail & Related papers (2023-10-20T15:45:16Z) - A Long Way to Go: Investigating Length Correlations in RLHF [59.49656695716066]
This paper demonstrates, on three diverse settings, that optimizing for response length is a significant factor behind RLHF.
We find improvements in reward to largely be driven by increasing response length, instead of other features.
Even a purely length-based reward reproduces most downstream RLHF improvements over supervised fine-tuned models.
arXiv Detail & Related papers (2023-10-05T17:38:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.