The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback
- URL: http://arxiv.org/abs/2311.00168v2
- Date: Fri, 2 Feb 2024 03:41:50 GMT
- Title: The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback
- Authors: Nathan Lambert and Roberto Calandra
- Abstract summary: Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings.
In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions.
- Score: 5.037876196534672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has emerged as a powerful
technique to make large language models (LLMs) more capable in complex
settings. RLHF proceeds as collecting human preference data, training a reward
model on said data, and optimizing a base ML model with respect to said reward
for extrinsic evaluation metrics (e.g. MMLU, GSM8k). RLHF relies on many
assumptions about how the various pieces fit together, such as a reward model
capturing human preferences and an RL optimizer extracting the right signal
from a reward model. As the RLHF process involves many distinct design
decisions, it is easy to assume that multiple processes are correlated and
therefore numerically linked. This apparent correlation is often not true,
where reward models are easily overoptimized or RL optimizers can reduce
performance on tasks not modeled in the data. Notable manifestations of models
trained with imperfect RLHF systems are those that are prone to refusing basic
requests for safety reasons or appearing lazy in generations. As chat model
evaluation becomes increasingly nuanced, the reliance on a perceived link
between reward model training, RL scores, and downstream performance drives
these issues, which we describe as an objective mismatch. In this paper, we
illustrate the causes of this issue, reviewing relevant literature from
model-based reinforcement learning, and argue for solutions. By solving
objective mismatch in RLHF, the ML models of the future will be more precisely
aligned to user instructions for both safety and helpfulness.
Related papers
- How to Evaluate Reward Models for RLHF [51.31240621943791]
We introduce a new benchmark for reward models that quantifies their ability to produce strong language models through RLHF (Reinforcement Learning from Human Feedback)
We build a predictive model of downstream LLM performance by evaluating the reward model on proxy tasks.
We launch an end-to-end RLHF experiment on a large-scale crowdsourced human preference platform to view real reward model downstream performance as ground truth.
arXiv Detail & Related papers (2024-10-18T21:38:21Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
Reinforcement Learning from Human Feedback (RLHF) is a technique that aligns language models closely with human-centric values.
It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective.
This paper delves into these issues, leveraging the theoretical insights to design improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS)
arXiv Detail & Related papers (2024-01-29T17:43:42Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
We focus on two prevalent methods used to align large language models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods.
Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement.
arXiv Detail & Related papers (2023-10-25T16:52:00Z) - The History and Risks of Reinforcement Learning and Human Feedback [0.16843915833103415]
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models easier to use and more effective.
A core piece of the RLHF process is the training and utilization of a model of human preferences that acts as a reward function for optimization.
RLHF reward models are often cited as being central to achieving performance, yet very few descriptors of capabilities, evaluations, training methods, or open-source models exist.
arXiv Detail & Related papers (2023-10-20T15:45:16Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO)
We propose a novel learning paradigm called RRHF, which scores sampled responses from different sources via a logarithm of conditional probabilities.
We evaluate RRHF on the Helpful and Harmless dataset, demonstrating comparable alignment performance with PPO by reward model score and human labeling.
arXiv Detail & Related papers (2023-04-11T15:53:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.