Optimizing Location Allocation in Urban Management: A Brief Review
- URL: http://arxiv.org/abs/2412.06032v1
- Date: Sun, 08 Dec 2024 19:02:40 GMT
- Title: Optimizing Location Allocation in Urban Management: A Brief Review
- Authors: Aref Ayati, Mohammad Mahdi Hashemi, Mohsen Saffar, Hamid Reza Naji,
- Abstract summary: Location allocation problems can be a new part of digital transformation in urban management.
The issue of accurate location allocation based on existing criteria directly impacts cost management, profit, efficiency, and citizen satisfaction.
Suggestions will be made for continuing the path and improving scientific and practical research in this field.
- Score: 1.799933345199395
- License:
- Abstract: Regarding the concepts of urban management, digital transformation, and smart cities, various issues are presented. Currently, we like to attend to location allocation problems that can be a new part of digital transformation in urban management (such as locating and placing facilities, locating and arranging centers such as aid and rescue centers, or even postal hubs, telecommunications, electronic equipment, and data centers, and routing in transportation optimization). These issues, which are seemingly simple but in practice complex, are important in urban environments, and the issue of accurate location allocation based on existing criteria directly impacts cost management, profit, efficiency, and citizen satisfaction. In recent years, researchers have used or presented various models and methods for location allocation problems, some of which will be mentioned in this article. Given the nature of these problems, which are optimization problems, this article will also examine existing research from an optimization perspective in summary. Finally, a brief conclusion will be made of the existing methods and their weaknesses, and suggestions will be made for continuing the path and improving scientific and practical research in this field.
Related papers
- DistrictNet: Decision-aware learning for geographical districting [47.36059095502583]
Districting is a complex problem that consists in partitioning a geographical area into small districts.
We present a structured learning approach to find high-quality solutions to real-world districting problems in a few minutes.
Our approach outperforms existing methods as it can significantly reduce costs on real-world cities.
arXiv Detail & Related papers (2024-12-11T11:02:48Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models [24.88814197611069]
The integration of machine learning techniques has become a cornerstone in the development of intelligent urban services.
Recent advancements in foundational models, such as ChatGPT, have introduced a paradigm shift within the fields of machine learning and artificial intelligence.
Despite increasing attention to Urban Foundation Models (UFMs), this rapidly evolving field faces critical challenges.
arXiv Detail & Related papers (2024-01-30T04:48:16Z) - Data analytics on key indicators for the city's urban services and
dashboards for leadership and decision-making [0.0]
Dashboards may collect, display, analyze, and provide information on regional performance to help smart cities development have sustainability.
This chapter culminates Data Analytics on key indicators for the city's urban services and dashboards for leadership and decision-making.
arXiv Detail & Related papers (2022-12-01T19:05:16Z) - Transit facility allocation: Hybrid quantum-classical optimization [0.0]
Transit facility consolidation is a cost-effective way to improve the quality of service.
This paper develops an optimization framework that integrates GIS, decision-making analysis, and quantum technologies.
We demonstrate the effectiveness of our framework by reducing the number of facilities by 40% while maintaining the same service accessibility.
arXiv Detail & Related papers (2022-10-22T21:53:00Z) - A Cross-City Federated Transfer Learning Framework: A Case Study on
Urban Region Profiling [24.103961649276584]
We propose a novel Cross-city Federated Transfer Learning framework (CcFTL) to cope with the data insufficiency and privacy problems.
CcFTL transfers the relational knowledge from multiple rich-data source cities to the target city.
We take the urban region profiling as an application of smart cities and evaluate the proposed method with a real-world study.
arXiv Detail & Related papers (2022-05-31T12:41:01Z) - On Telecommunication Service Imbalance and Infrastructure Resource
Deployment [95.80185574417428]
We propose a fine-grained and easy-to-compute imbalance index, aiming to quantitatively link the relation among telecommunication service imbalance, telecommunication infrastructure, and demographic distribution.
Based on this index, we also propose an infrastructure resource deployment strategy by minimizing the average imbalance index of any geographical segment.
arXiv Detail & Related papers (2021-04-08T17:45:32Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
We present an overview of our current research activities concerning the development of new algorithms for route planning problems.
The research so far has focused in particular on the Euclidean Traveling Salesperson Problem (Euclidean TSP)
The aim is to exploit the results obtained also to other problems of the same category, such as the Euclidean Vehicle Problem (Euclidean VRP), in the future.
arXiv Detail & Related papers (2020-09-22T00:51:45Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
We provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning.
A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping.
It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities.
arXiv Detail & Related papers (2020-06-22T19:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.