Evaluating and Mitigating Social Bias for Large Language Models in Open-ended Settings
- URL: http://arxiv.org/abs/2412.06134v2
- Date: Sun, 19 Jan 2025 23:21:59 GMT
- Title: Evaluating and Mitigating Social Bias for Large Language Models in Open-ended Settings
- Authors: Zhao Liu, Tian Xie, Xueru Zhang,
- Abstract summary: We extend an existing BBQ dataset by incorporating fill-in-the-blank and short-answer question types.
Our finding reveals that LLMs produce responses that are more biased against certain protected attributes, like age and socio-economic status.
Our debiasing approach combined zero-shot, few-shot, and chain-of-thought could significantly reduce the level of bias to almost 0.
- Score: 13.686732204665738
- License:
- Abstract: Current social bias benchmarks for Large Language Models (LLMs) primarily rely on pre-defined question formats like multiple-choice, limiting their ability to reflect the complexity and open-ended nature of real-world interactions. To address this gap, we extend an existing BBQ dataset introduced by incorporating fill-in-the-blank and short-answer question types, designed to evaluate biases in an open-ended setting. Our finding reveals that LLMs tend to produce responses that are more biased against certain protected attributes, like age and socio-economic status. On the other hand, these biased outputs produced by LLMs can serve as valuable contexts and chains of thought for debiasing. Our debiasing approach combined zero-shot, few-shot, and chain-of-thought could significantly reduce the level of bias to almost 0. We open-source our evaluation and debiasing code hoping to encourage further measurements and mitigation of bias and stereotype in LLMs.
Related papers
- Towards Resource Efficient and Interpretable Bias Mitigation in Large Language Models [1.787433808079955]
Large language models (LLMs) have been observed to perpetuate unwanted biases in training data.
In this paper, we mitigate bias by leveraging small biased and anti-biased expert models to obtain a debiasing signal.
Experiments on mitigating gender, race, and religion biases show a reduction in bias on several local and global bias metrics.
arXiv Detail & Related papers (2024-12-02T16:56:08Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
Large Language Models (LLMs) are being adopted across a wide range of tasks.
Recent research indicates that LLMs can harbor implicit biases even when they pass explicit bias evaluations.
This study highlights that newer or larger language models do not automatically exhibit reduced bias.
arXiv Detail & Related papers (2024-10-13T03:43:18Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
Large Language Models (LLMs) are powerful tools with the potential to benefit society immensely, yet, they have demonstrated biases that perpetuate societal inequalities.
Recent research has shown a growing interest in multi-LLM approaches, which have been demonstrated to be effective in improving the quality of reasoning.
We propose a novel multi-LLM debiasing framework aimed at reducing bias in LLMs.
arXiv Detail & Related papers (2024-09-20T20:24:50Z) - Promoting Equality in Large Language Models: Identifying and Mitigating the Implicit Bias based on Bayesian Theory [29.201402717025335]
Large language models (LLMs) are trained on extensive text corpora, which inevitably include biased information.
We have formally defined the implicit bias problem and developed an innovative framework for bias removal based on Bayesian theory.
arXiv Detail & Related papers (2024-08-20T07:40:12Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
We introduce VLBiasBench, a benchmark to evaluate biases in Large Vision-Language Models (LVLMs)
VLBiasBench features a dataset that covers nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status, as well as two intersectional bias categories: race x gender and race x social economic status.
We conduct extensive evaluations on 15 open-source models as well as two advanced closed-source models, yielding new insights into the biases present in these models.
arXiv Detail & Related papers (2024-06-20T10:56:59Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
We leverage the zero-shot capabilities of large language models to reduce stereotyping.
We show that self-debiasing can significantly reduce the degree of stereotyping across nine different social groups.
We hope this work opens inquiry into other zero-shot techniques for bias mitigation.
arXiv Detail & Related papers (2024-02-03T01:40:11Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes.
We compare 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs.
We conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements.
arXiv Detail & Related papers (2023-11-29T23:03:04Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.