ACQ: A Unified Framework for Automated Programmatic Creativity in Online Advertising
- URL: http://arxiv.org/abs/2412.06167v1
- Date: Mon, 09 Dec 2024 03:00:57 GMT
- Title: ACQ: A Unified Framework for Automated Programmatic Creativity in Online Advertising
- Authors: Ruizhi Wang, Kai Liu, Bingjie Li, Yu Rong, Qingpeng Cai, Fei Pan, Peng Jiang,
- Abstract summary: This paper proposes a two-stage framework named Automated Creatives Quota (ACQ) to achieve the automatic creation and deactivation of ad creatives.
ACQ dynamically allocates the creative quota across multiple advertisers to maximize the revenue of the ad platform.
- Score: 30.584160762498655
- License:
- Abstract: In online advertising, the demand-side platform (a.k.a. DSP) enables advertisers to create different ad creatives for real-time bidding. Intuitively, advertisers tend to create more ad creatives for a single photo to increase the probability of participating in bidding, further enhancing their ad cost. From the perspective of DSP, the following are two overlooked issues. On the one hand, the number of ad creatives cannot grow indefinitely. On the other hand, the marginal effects of ad cost diminish as the number of ad creatives increases. To this end, this paper proposes a two-stage framework named Automated Creatives Quota (ACQ) to achieve the automatic creation and deactivation of ad creatives. ACQ dynamically allocates the creative quota across multiple advertisers to maximize the revenue of the ad platform. ACQ comprises two components: a prediction module to estimate the cost of a photo under different numbers of ad creatives, and an allocation module to decide the quota for photos considering their estimated costs in the prediction module. Specifically, in the prediction module, we develop a multi-task learning model based on an unbalanced binary tree to effectively mitigate the target variable imbalance problem. In the allocation module, we formulate the quota allocation problem as a multiple-choice knapsack problem (MCKP) and develop an efficient solver to solve such large-scale problems involving tens of millions of ads. We performed extensive offline and online experiments to validate the superiority of our proposed framework, which increased cost by 9.34%.
Related papers
- CTR-Driven Advertising Image Generation with Multimodal Large Language Models [53.40005544344148]
We explore the use of Multimodal Large Language Models (MLLMs) for generating advertising images by optimizing for Click-Through Rate (CTR) as the primary objective.
To further improve the CTR of generated images, we propose a novel reward model to fine-tune pre-trained MLLMs through Reinforcement Learning (RL)
Our method achieves state-of-the-art performance in both online and offline metrics.
arXiv Detail & Related papers (2025-02-05T09:06:02Z) - Parallel Ranking of Ads and Creatives in Real-Time Advertising Systems [20.78133992969317]
We propose for the first time a novel architecture for online parallel estimation of ads and creatives ranking.
The online architecture enables sophisticated personalized creative modeling while reducing overall latency.
The offline joint model for CTR estimation allows mutual awareness and collaborative optimization between ads and creatives.
arXiv Detail & Related papers (2023-12-20T04:05:21Z) - Online Ad Procurement in Non-stationary Autobidding Worlds [10.871587311621974]
We introduce a primal-dual algorithm for online decision making with multi-dimension decision variables, bandit feedback and long-term uncertain constraints.
We show that our algorithm achieves low regret in many worlds when procurement outcomes are generated through procedures that are adversarial, adversarially corrupted, periodic, and ergodic.
arXiv Detail & Related papers (2023-07-10T00:41:08Z) - Incrementality Bidding and Attribution [0.4511923587827302]
In digital advertising three major puzzle pieces are central to quantifying advertising incrementality: ad buying/bidding/pricing, attribution, and experimentation.
We propose a methodology that unifies these three concepts into a computationally viable model of both bidding and attribution.
arXiv Detail & Related papers (2022-08-25T18:33:08Z) - A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in
Online Advertising [53.636153252400945]
We propose a general Multi-Agent reinforcement learning framework for Auto-Bidding, namely MAAB, to learn the auto-bidding strategies.
Our approach outperforms several baseline methods in terms of social welfare and guarantees the ad platform's revenue.
arXiv Detail & Related papers (2021-06-11T08:07:14Z) - Efficient Optimal Selection for Composited Advertising Creatives with
Tree Structure [24.13017090236483]
Ad creatives with enjoyable visual appearance may increase the click-through rate (CTR) of products.
We propose an Adaptive and Efficient ad creative Selection framework based on a tree structure.
Based on the tree structure, Thompson sampling is adapted with dynamic programming, leading to efficient exploration for potential ad creatives with the largest CTR.
arXiv Detail & Related papers (2021-03-02T03:39:41Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
Real-Time Bidding is a new Internet advertising system that has become very popular in recent years.
We propose an alternative betting system with a new approach that not only considers the economic aspect but also other relevant factors for the functioning of the advertising system.
arXiv Detail & Related papers (2020-10-22T18:36:41Z) - Learning to Create Better Ads: Generation and Ranking Approaches for Ad
Creative Refinement [26.70647666598025]
We study approaches to refine the given ad text and image by: (i) generating new ad text, (ii) recommending keyphrases for new ad text, and (iii) recommending image tags (objects in image)
Based on A/B tests conducted by multiple advertisers, we form pairwise examples of inferior and superior ad creatives.
We also share broadly applicable insights from our experiments using data from the Yahoo Gemini ad platform.
arXiv Detail & Related papers (2020-08-17T16:46:28Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z) - Online Joint Bid/Daily Budget Optimization of Internet Advertising
Campaigns [115.96295568115251]
We study the problem of automating the online joint bid/daily budget optimization of pay-per-click advertising campaigns over multiple channels.
For every campaign, we capture the dependency of the number of clicks on the bid and daily budget by Gaussian Processes.
We design four algorithms and show that they suffer from a regret that is upper bounded with high probability as O(sqrtT)
We present the results of the adoption of our algorithms in a real-world application with a daily average spent of 1,000 Euros for more than one year.
arXiv Detail & Related papers (2020-03-03T11:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.