Adaptive Resolution Residual Networks -- Generalizing Across Resolutions Easily and Efficiently
- URL: http://arxiv.org/abs/2412.06195v1
- Date: Mon, 09 Dec 2024 04:25:37 GMT
- Title: Adaptive Resolution Residual Networks -- Generalizing Across Resolutions Easily and Efficiently
- Authors: Léa Demeule, Mahtab Sandhu, Glen Berseth,
- Abstract summary: We introduce Adaptive Resolution Residual Networks (ARRNs)
ARRNs inherit the advantages of adaptive-resolution methods and the ease of use of fixed-resolution methods.
We show that ARRNs embrace the challenge posed by diverse resolutions with greater flexibility, robustness, and computational efficiency.
- Score: 7.087237546722617
- License:
- Abstract: The majority of signal data captured in the real world uses numerous sensors with different resolutions. In practice, however, most deep learning architectures are fixed-resolution; they consider a single resolution at training time and inference time. This is convenient to implement but fails to fully take advantage of the diverse signal data that exists. In contrast, other deep learning architectures are adaptive-resolution; they directly allow various resolutions to be processed at training time and inference time. This benefits robustness and computational efficiency but introduces difficult design constraints that hinder mainstream use. In this work, we address the shortcomings of both fixed-resolution and adaptive-resolution methods by introducing Adaptive Resolution Residual Networks (ARRNs), which inherit the advantages of adaptive-resolution methods and the ease of use of fixed-resolution methods. We construct ARRNs from Laplacian residuals, which serve as generic adaptive-resolution adapters for fixed-resolution layers, and which allow casting high-resolution ARRNs into low-resolution ARRNs at inference time by simply omitting high-resolution Laplacian residuals, thus reducing computational cost on low-resolution signals without compromising performance. We complement this novel component with Laplacian dropout, which regularizes for robustness to a distribution of lower resolutions, and which also regularizes for errors that may be induced by approximate smoothing kernels in Laplacian residuals. We provide a solid grounding for the advantageous properties of ARRNs through a theoretical analysis based on neural operators, and empirically show that ARRNs embrace the challenge posed by diverse resolutions with greater flexibility, robustness, and computational efficiency.
Related papers
- Cross-Domain Knowledge Distillation for Low-Resolution Human Pose Estimation [31.970739018426645]
In practical applications of human pose estimation, low-resolution inputs frequently occur, and existing state-of-the-art models perform poorly with low-resolution images.
This work focuses on boosting the performance of low-resolution models by distilling knowledge from a high-resolution model.
arXiv Detail & Related papers (2024-05-19T04:57:17Z) - DyRA: Portable Dynamic Resolution Adjustment Network for Existing Detectors [0.669087470775851]
This paper introduces DyRA, a dynamic resolution adjustment network providing an image-specific scale factor for existing detectors.
Loss function is devised to minimize the accuracy drop across contrasting objectives of different-sized objects for scaling.
arXiv Detail & Related papers (2023-11-28T07:52:41Z) - An Operator Learning Framework for Spatiotemporal Super-resolution of Scientific Simulations [3.921076451326108]
The Super Resolution Operator Network (SRNet) frames super-resolution as an operator learning problem.
It draws inspiration from existing operator learning problems to learn continuous representations of parametric differential equations from low-resolution approximations.
No restrictions are imposed on the locations of sensors at which the low-resolution approximations are provided.
arXiv Detail & Related papers (2023-11-04T05:33:23Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
Cross-resolution person re-identification problem aims to match low-resolution (LR) query identity images against high resolution (HR) gallery images.
It is a challenging and practical problem since the query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras.
This paper explores an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric, which is adaptive to the resolution of a query image.
arXiv Detail & Related papers (2022-07-09T03:49:51Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
Real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images.
Recent research on Real-ISR has achieved significant progress by modeling the image degradation space.
We propose an efficient degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image.
arXiv Detail & Related papers (2022-03-27T05:59:13Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.