Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution
- URL: http://arxiv.org/abs/2203.14216v1
- Date: Sun, 27 Mar 2022 05:59:13 GMT
- Title: Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution
- Authors: Jie Liang and Hui Zeng and Lei Zhang
- Abstract summary: Real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images.
Recent research on Real-ISR has achieved significant progress by modeling the image degradation space.
We propose an efficient degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image.
- Score: 28.00231586840797
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficient and effective real-world image super-resolution (Real-ISR) is a
challenging task due to the unknown complex degradation of real-world images
and the limited computation resources in practical applications. Recent
research on Real-ISR has achieved significant progress by modeling the image
degradation space; however, these methods largely rely on heavy backbone
networks and they are inflexible to handle images of different degradation
levels. In this paper, we propose an efficient and effective
degradation-adaptive super-resolution (DASR) network, whose parameters are
adaptively specified by estimating the degradation of each input image.
Specifically, a tiny regression network is employed to predict the degradation
parameters of the input image, while several convolutional experts with the
same topology are jointly optimized to specify the network parameters via a
non-linear mixture of experts. The joint optimization of multiple experts and
the degradation-adaptive pipeline significantly extend the model capacity to
handle degradations of various levels, while the inference remains efficient
since only one adaptively specified network is used for super-resolving the
input image. Our extensive experiments demonstrate that the proposed DASR is
not only much more effective than existing methods on handling real-world
images with different degradation levels but also efficient for easy
deployment. Codes, models and datasets are available at
https://github.com/csjliang/DASR.
Related papers
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold [13.379416816598873]
This paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA)
The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem.
In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise.
arXiv Detail & Related papers (2022-11-30T09:55:45Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.