Skill-Enhanced Reinforcement Learning Acceleration from Demonstrations
- URL: http://arxiv.org/abs/2412.06207v1
- Date: Mon, 09 Dec 2024 04:58:14 GMT
- Title: Skill-Enhanced Reinforcement Learning Acceleration from Demonstrations
- Authors: Hanping Zhang, Yuhong Guo,
- Abstract summary: We propose a two-stage method dubbed as Skill-enhanced Reinforcement Learning Acceleration (SeRLA)
SeRLA introduces a skill-level adversarial Positive-Unlabeled (PU) learning model to extract useful skill prior knowledge.
It then deploys a skill-based soft actor-critic algorithm to leverage this acquired prior knowledge in the downstream online RL stage.
- Score: 23.15178050525514
- License:
- Abstract: Learning from Demonstration (LfD) aims to facilitate rapid Reinforcement Learning (RL) by leveraging expert demonstrations to pre-train the RL agent. However, the limited availability of expert demonstration data often hinders its ability to effectively aid downstream RL learning. To address this problem, we propose a novel two-stage method dubbed as Skill-enhanced Reinforcement Learning Acceleration (SeRLA). SeRLA introduces a skill-level adversarial Positive-Unlabeled (PU) learning model to extract useful skill prior knowledge by enabling learning from both limited expert data and general low-cost demonstration data in the offline prior learning stage. Subsequently, it deploys a skill-based soft actor-critic algorithm to leverage this acquired prior knowledge in the downstream online RL stage for efficient training of a skill policy network. Moreover, we develop a simple skill-level data enhancement technique to further alleviate data sparsity and improve both skill prior learning and downstream skill policy training. Our experimental results on multiple standard RL environments show the proposed SeRLA method achieves state-of-the-art performance on accelerating reinforcement learning on downstream tasks, especially in the early learning phase.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration [54.8229698058649]
We study how unlabeled prior trajectory data can be leveraged to learn efficient exploration strategies.
Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits.
We empirically show that SUPE reliably outperforms prior strategies, successfully solving a suite of long-horizon, sparse-reward tasks.
arXiv Detail & Related papers (2024-10-23T17:58:45Z) - EXTRACT: Efficient Policy Learning by Extracting Transferable Robot Skills from Offline Data [22.471559284344462]
Most reinforcement learning (RL) methods focus on learning optimal policies over low-level action spaces.
While these methods can perform well in their training environments, they lack the flexibility to transfer to new tasks.
We demonstrate through experiments in sparse, image-based, robot manipulation environments that can more quickly learn new tasks than prior works.
arXiv Detail & Related papers (2024-06-25T17:50:03Z) - DELTA: Decoupling Long-Tailed Online Continual Learning [7.507868991415516]
Long-Tailed Online Continual Learning (LTOCL) aims to learn new tasks from sequentially arriving class-imbalanced data streams.
We present DELTA, a decoupled learning approach designed to enhance learning representations.
We demonstrate that DELTA improves the capacity for incremental learning, surpassing existing OCL methods.
arXiv Detail & Related papers (2024-04-06T02:33:04Z) - Bootstrapping Reinforcement Learning with Imitation for Vision-Based Agile Flight [20.92646531472541]
We propose a novel approach that combines the performance of Reinforcement Learning (RL) and the sample efficiency of Imitation Learning (IL)
Our framework contains three phases teacher policy using RL with privileged state information distilling it into a student policy via IL, and adaptive fine-tuning via RL.
Tests show our approach can not only learn in scenarios where RL from scratch fails but also outperforms existing IL methods in both robustness and performance.
arXiv Detail & Related papers (2024-03-18T19:25:57Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - RvS: What is Essential for Offline RL via Supervised Learning? [77.91045677562802]
Recent work has shown that supervised learning alone, without temporal difference (TD) learning, can be remarkably effective for offline RL.
In every environment suite we consider simply maximizing likelihood with two-layer feedforward is competitive.
They also probe the limits of existing RvS methods, which are comparatively weak on random data.
arXiv Detail & Related papers (2021-12-20T18:55:16Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.