A Self-guided Multimodal Approach to Enhancing Graph Representation Learning for Alzheimer's Diseases
- URL: http://arxiv.org/abs/2412.06212v1
- Date: Mon, 09 Dec 2024 05:16:32 GMT
- Title: A Self-guided Multimodal Approach to Enhancing Graph Representation Learning for Alzheimer's Diseases
- Authors: Zhepeng Wang, Runxue Bao, Yawen Wu, Guodong Liu, Lei Yang, Liang Zhan, Feng Zheng, Weiwen Jiang, Yanfu Zhang,
- Abstract summary: Graph neural networks (GNNs) are powerful machine learning models designed to handle irregularly structured data.
This paper presents a self-guided, knowledge-infused multimodal GNN that autonomously incorporates domain knowledge into the model development process.
Our approach conceptualizes domain knowledge as natural language and introduces a specialized multimodal GNN capable of leveraging this uncurated knowledge.
- Score: 45.59286036227576
- License:
- Abstract: Graph neural networks (GNNs) are powerful machine learning models designed to handle irregularly structured data. However, their generic design often proves inadequate for analyzing brain connectomes in Alzheimer's Disease (AD), highlighting the need to incorporate domain knowledge for optimal performance. Infusing AD-related knowledge into GNNs is a complicated task. Existing methods typically rely on collaboration between computer scientists and domain experts, which can be both time-intensive and resource-demanding. To address these limitations, this paper presents a novel self-guided, knowledge-infused multimodal GNN that autonomously incorporates domain knowledge into the model development process. Our approach conceptualizes domain knowledge as natural language and introduces a specialized multimodal GNN capable of leveraging this uncurated knowledge to guide the learning process of the GNN, such that it can improve the model performance and strengthen the interpretability of the predictions. To evaluate our framework, we curated a comprehensive dataset of recent peer-reviewed papers on AD and integrated it with multiple real-world AD datasets. Experimental results demonstrate the ability of our method to extract relevant domain knowledge, provide graph-based explanations for AD diagnosis, and improve the overall performance of the GNN. This approach provides a more scalable and efficient alternative to inject domain knowledge for AD compared with the manual design from the domain expert, advancing both prediction accuracy and interpretability in AD diagnosis.
Related papers
- Preserving Information: How does Topological Data Analysis improve Neural Network performance? [0.0]
We introduce a method for integrating Topological Data Analysis (TDA) with Convolutional Neural Networks (CNN) in the context of image recognition.
Our approach, further referred to as Vector Stitching, involves combining raw image data with additional topological information.
The results of our experiments highlight the potential of incorporating results of additional data analysis into the network's inference process.
arXiv Detail & Related papers (2024-11-27T14:56:05Z) - Bayesian Neural Networks with Domain Knowledge Priors [52.80929437592308]
We propose a framework for integrating general forms of domain knowledge into a BNN prior.
We show that BNNs using our proposed domain knowledge priors outperform those with standard priors.
arXiv Detail & Related papers (2024-02-20T22:34:53Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Exploring Causal Learning through Graph Neural Networks: An In-depth
Review [12.936700685252145]
We introduce a novel taxonomy that encompasses various state-of-the-art GNN methods employed in studying causality.
GNNs are further categorized based on their applications in the causality domain.
This review also touches upon the application of causal learning across diverse sectors.
arXiv Detail & Related papers (2023-11-25T10:46:06Z) - Bridged-GNN: Knowledge Bridge Learning for Effective Knowledge Transfer [65.42096702428347]
Graph Neural Networks (GNNs) aggregate information from neighboring nodes.
Knowledge Bridge Learning (KBL) learns a knowledge-enhanced posterior distribution for target domains.
Bridged-GNN includes an Adaptive Knowledge Retrieval module to build Bridged-Graph and a Graph Knowledge Transfer module.
arXiv Detail & Related papers (2023-08-18T12:14:51Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - Introducing Expertise Logic into Graph Representation Learning from A
Causal Perspective [19.6045119188211]
We propose a novel graph representation learning method to incorporate human expert knowledge into GNN models.
The proposed method ensures that the GNN model can not only acquire the expertise held by human experts but also engage in end-to-end learning from datasets.
arXiv Detail & Related papers (2023-01-20T09:54:44Z) - Coarse-to-fine Knowledge Graph Domain Adaptation based on
Distantly-supervised Iterative Training [12.62127290494378]
We propose an integrated framework for adapting and re-learning knowledge graphs.
No manual data annotation is required to train the model.
We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples.
arXiv Detail & Related papers (2022-11-05T08:16:38Z) - Incorporation of Deep Neural Network & Reinforcement Learning with
Domain Knowledge [0.0]
We present a study of the manners by which Domain information has been incorporated when building models with Neural Networks.
Integrating space data is uniquely important to the development of Knowledge understanding model, as well as other fields that aid in understanding information by utilizing the human-machine interface and Reinforcement Learning.
arXiv Detail & Related papers (2021-07-29T17:29:02Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.