論文の概要: See Further When Clear: Curriculum Consistency Model
- arxiv url: http://arxiv.org/abs/2412.06295v1
- Date: Mon, 09 Dec 2024 08:39:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:38.850503
- Title: See Further When Clear: Curriculum Consistency Model
- Title(参考訳): 詳細: カリキュラム整合性モデル
- Authors: Yunpeng Liu, Boxiao Liu, Yi Zhang, Xingzhong Hou, Guanglu Song, Yu Liu, Haihang You,
- Abstract要約: 本稿では,時間ステップ間で学習の複雑さを安定させ,バランスをとるCCMを提案する。
具体的には,各時期の蒸留工程をカリキュラムとみなし,学習の複雑さを定量化するためのピーク信号対雑音比(PSNR)に基づくメトリクスを導入する。
CIFAR-10ではFr't Inception Distance(FID)スコアが1.64、ImageNet 64x64では2.18である。
- 参考スコア(独自算出の注目度): 20.604239652914355
- License:
- Abstract: Significant advances have been made in the sampling efficiency of diffusion models and flow matching models, driven by Consistency Distillation (CD), which trains a student model to mimic the output of a teacher model at a later timestep. However, we found that the learning complexity of the student model varies significantly across different timesteps, leading to suboptimal performance in CD.To address this issue, we propose the Curriculum Consistency Model (CCM), which stabilizes and balances the learning complexity across timesteps. Specifically, we regard the distillation process at each timestep as a curriculum and introduce a metric based on Peak Signal-to-Noise Ratio (PSNR) to quantify the learning complexity of this curriculum, then ensure that the curriculum maintains consistent learning complexity across different timesteps by having the teacher model iterate more steps when the noise intensity is low. Our method achieves competitive single-step sampling Fr\'echet Inception Distance (FID) scores of 1.64 on CIFAR-10 and 2.18 on ImageNet 64x64.Moreover, we have extended our method to large-scale text-to-image models and confirmed that it generalizes well to both diffusion models (Stable Diffusion XL) and flow matching models (Stable Diffusion 3). The generated samples demonstrate improved image-text alignment and semantic structure, since CCM enlarges the distillation step at large timesteps and reduces the accumulated error.
- Abstract(参考訳): 拡散モデルと流れマッチングモデルのサンプリング効率は、学生モデルに後続のタイミングで教師モデルの出力を模倣するように訓練するCD(Consistency Distillation)によって促進されている。
しかし,学生モデルの学習複雑性は時間段階によって大きく異なり,CDの最適以下の性能が向上することが判明し,その課題に対処するために,時間段階間で学習複雑性を安定化・均衡させるカリキュラム一貫性モデル(CCM)を提案する。
具体的には,各時期の蒸留工程をカリキュラムとみなし,ピーク信号対雑音比(PSNR)に基づくメトリクスを導入して,カリキュラムの学習複雑性を定量化し,教師モデルが低音度時により多くのステップを反復させることにより,カリキュラムが異なる期間にわたって一貫した学習複雑性を維持することを保証する。
CIFAR-10 では Fr\'echet Inception Distance (FID) スコアが 1.64 で ImageNet 64x64 では 2.18 で,さらに大規模なテキスト・画像モデルにも拡張し,拡散モデル (Stable Diffusion XL) とフローマッチングモデル (Stable Diffusion 3) の両方によく適用可能であることを確認した。
CCMは蒸留工程を大規模に拡大し, 累積誤差を低減するため, 画像テキストアライメントとセマンティック構造が改善された。
関連論文リスト
- Stable Consistency Tuning: Understanding and Improving Consistency Models [40.2712218203989]
拡散モデルは、より優れた生成品質を達成するが、復調の反復的な性質により、生成速度が遅くなる。
新しいジェネレーティブファミリーである一貫性モデルは、非常に高速なサンプリングで競争性能を達成する。
本稿では,拡散モデルの分解過程をマルコフ決定過程(MDP)としてモデル化し,時間差分学習(TD)による値推定としてフレーミング一貫性モデルのトレーニングを提案する。
論文 参考訳(メタデータ) (2024-10-24T17:55:52Z) - Decouple-Then-Merge: Towards Better Training for Diffusion Models [45.89372687373466]
拡散モデルは、ノイズ破損の各ステップを反転させる一連のモデルを学ぶことで訓練される。
この研究はDeouple-then-Merge(DeMe)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-09T08:19:25Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
この制限を解除し、MDDトレーニングを改善する一連の技術であるMDD2を紹介する。
まず、回帰損失と高価なデータセット構築の必要性を排除します。
第2に, GAN損失を蒸留工程に統合し, 生成した試料と実画像との識別を行う。
論文 参考訳(メタデータ) (2024-05-23T17:59:49Z) - Fixed Point Diffusion Models [13.035518953879539]
FPDM(Fixed Point Diffusion Model)は、FPDM(Fixed Point Diffusion Model)の概念を拡散に基づく生成モデルに組み込んだ画像生成手法である。
提案手法では,拡散モデルのデノナイズネットワークに暗黙の固定点解法層を埋め込み,拡散過程を密接な関係のある固定点問題列に変換する。
我々は、ImageNet、FFHQ、CelebA-HQ、LSUN-Churchの最先端モデルを用いて実験を行い、性能と効率を大幅に改善した。
論文 参考訳(メタデータ) (2024-01-16T18:55:54Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
本稿では,拡散モデルを初期雑音から得られた画像に直接蒸留する簡易かつ効果的な方法を提案する。
本手法は,拡散モデルからノイズ/イメージペアのみによる完全オフライントレーニングを可能にする。
GET は FID スコアの点で 5 倍の ViT と一致するので,DEC アーキテクチャがこの能力に不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-12T07:28:40Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
本稿では,LCM(Latent Consistency Models)を提案する。
高品質の768 x 768 24-step LCMは、トレーニングに32A100 GPU時間しかかからない。
また,画像データセットの微調整に適した新しいLCM法であるLCF(Latent Consistency Fine-tuning)についても紹介する。
論文 参考訳(メタデータ) (2023-10-06T17:11:58Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Deep Equilibrium Approaches to Diffusion Models [1.4275201654498746]
拡散に基づく生成モデルは高品質な画像を生成するのに極めて効果的である。
これらのモデルは通常、高忠実度画像を生成するために長いサンプリングチェーンを必要とする。
我々は、異なる観点からの拡散モデル、すなわち(深い)平衡(DEQ)固定点モデルについて考察する。
論文 参考訳(メタデータ) (2022-10-23T22:02:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。