Self-Paced Learning Strategy with Easy Sample Prior Based on Confidence for the Flying Bird Object Detection Model Training
- URL: http://arxiv.org/abs/2412.06306v1
- Date: Mon, 09 Dec 2024 08:53:56 GMT
- Title: Self-Paced Learning Strategy with Easy Sample Prior Based on Confidence for the Flying Bird Object Detection Model Training
- Authors: Zi-Wei Sun, Ze-Xi hua, Heng-Chao Li, Yan Li,
- Abstract summary: The Flying Bird Object Detection model (FBOD model) is designed according to the characteristics of flying bird objects in surveillance video.
The Self-Paced Learning strategy with Easy Sample Prior Based on Confidence (SPL-ESP-BC) is proposed.
Using this strategy to train the FBOD model can make it to learn the characteristics of the flying bird object in the surveillance video better.
- Score: 9.597393200515377
- License:
- Abstract: In order to avoid the impact of hard samples on the training process of the Flying Bird Object Detection model (FBOD model, in our previous work, we designed the FBOD model according to the characteristics of flying bird objects in surveillance video), the Self-Paced Learning strategy with Easy Sample Prior Based on Confidence (SPL-ESP-BC), a new model training strategy, is proposed. Firstly, the loss-based Minimizer Function in Self-Paced Learning (SPL) is improved, and the confidence-based Minimizer Function is proposed, which makes it more suitable for one-class object detection tasks. Secondly, to give the model the ability to judge easy and hard samples at the early stage of training by using the SPL strategy, an SPL strategy with Easy Sample Prior (ESP) is proposed. The FBOD model is trained using the standard training strategy with easy samples first, then the SPL strategy with all samples is used to train it. Combining the strategy of the ESP and the Minimizer Function based on confidence, the SPL-ESP-BC model training strategy is proposed. Using this strategy to train the FBOD model can make it to learn the characteristics of the flying bird object in the surveillance video better, from easy to hard. The experimental results show that compared with the standard training strategy that does not distinguish between easy and hard samples, the AP50 of the FBOD model trained by the SPL-ESP-BC is increased by 2.1%, and compared with other loss-based SPL strategies, the FBOD model trained with SPL-ESP-BC strategy has the best comprehensive detection performance.
Related papers
- Co-Paced Learning Strategy Based on Confidence for Flying Bird Object Detection Model Training [9.597393200515377]
Experimental results on two different datasets of flying bird objects in surveillance videos demonstrate that, compared to other model learning strategies, CPL-BC significantly improves detection accuracy.
arXiv Detail & Related papers (2025-01-21T11:54:37Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Heuristic-enhanced Candidates Selection strategy for GPTs tackle Few-Shot Aspect-Based Sentiment Analysis [1.5020330976600738]
The paper designs a Heuristic-enhanced Candidates Selection strategy and further proposes All in One (AiO) model based on it.
The model works in a two-stage, which simultaneously accommodates the accuracy of PLMs and the capability of generalization.
The experimental results demonstrate that the proposed model can better adapt to multiple sub-tasks, and also outperforms the methods that directly utilize GPTs.
arXiv Detail & Related papers (2024-04-09T07:02:14Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - An Adaptive Placement and Parallelism Framework for Accelerating RLHF Training [11.749347656959822]
We propose a flexible model placement framework that offers two general and agile model placement strategies.
Our framework provides a simple user interface and guidelines to easily and flexibly configure these strategies in various training scenarios.
arXiv Detail & Related papers (2023-12-19T03:24:55Z) - Model predictive control-based value estimation for efficient reinforcement learning [6.8237783245324035]
We design an improved reinforcement learning method based on model predictive control that models the environment through a data-driven approach.
Based on the learned environment model, it performs multi-step prediction to estimate the value function and optimize the policy.
The method demonstrates higher learning efficiency, faster convergent speed of strategies tending to the local optimal value, and less sample capacity space required by experience replay buffers.
arXiv Detail & Related papers (2023-10-25T13:55:14Z) - Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
A drawback of adversarial training is the computational overhead introduced by the generation of adversarial examples.
We propose to exploit the interior building blocks of the model to improve efficiency.
Compared with previous methods, our method not only reduces the training cost but also achieves better model robustness.
arXiv Detail & Related papers (2023-10-24T01:36:20Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
Model-based reinforcement learning algorithms are more sample efficient than their model-free counterparts.
We propose a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models.
We show that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging tasks.
arXiv Detail & Related papers (2021-12-16T15:33:11Z) - PGTRNet: Two-phase Weakly Supervised Object Detection with Pseudo Ground
Truth Refining [10.262660606897974]
Weakly Supervised Object Detection (WSOD) aiming to train detectors with only image-level annotations has arisen increasing attention.
Current state-of-the-art approaches mainly follow a two-stage training strategy whichintegrates a fully supervised detector (FSD) with a pure WSOD model.
There are two main problems hindering the performance of the two-phase WSOD approaches, i.e., insufficient learning problem and strict reliance between the FSD and the pseudo ground truth generated by theWSOD model.
This paper proposes pseudo ground truth refinement network (PGTRNet), a simple yet effective method
arXiv Detail & Related papers (2021-08-25T19:20:49Z) - Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection [86.0580214485104]
We propose a general and efficient pre-training paradigm, Montage pre-training, for object detection.
Montage pre-training needs only the target detection dataset while taking only 1/4 computational resources compared to the widely adopted ImageNet pre-training.
The efficiency and effectiveness of Montage pre-training are validated by extensive experiments on the MS-COCO dataset.
arXiv Detail & Related papers (2020-04-25T16:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.