Model predictive control-based value estimation for efficient reinforcement learning
- URL: http://arxiv.org/abs/2310.16646v2
- Date: Thu, 11 Apr 2024 06:08:45 GMT
- Title: Model predictive control-based value estimation for efficient reinforcement learning
- Authors: Qizhen Wu, Kexin Liu, Lei Chen,
- Abstract summary: We design an improved reinforcement learning method based on model predictive control that models the environment through a data-driven approach.
Based on the learned environment model, it performs multi-step prediction to estimate the value function and optimize the policy.
The method demonstrates higher learning efficiency, faster convergent speed of strategies tending to the local optimal value, and less sample capacity space required by experience replay buffers.
- Score: 6.8237783245324035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning suffers from limitations in real practices primarily due to the number of required interactions with virtual environments. It results in a challenging problem because we are implausible to obtain a local optimal strategy with only a few attempts for many learning methods. Hereby, we design an improved reinforcement learning method based on model predictive control that models the environment through a data-driven approach. Based on the learned environment model, it performs multi-step prediction to estimate the value function and optimize the policy. The method demonstrates higher learning efficiency, faster convergent speed of strategies tending to the local optimal value, and less sample capacity space required by experience replay buffers. Experimental results, both in classic databases and in a dynamic obstacle avoidance scenario for an unmanned aerial vehicle, validate the proposed approaches.
Related papers
- Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
Imitation Learning from observation describes policy learning in a similar way to human learning.
We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric.
arXiv Detail & Related papers (2022-02-09T08:38:50Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
Model-based reinforcement learning algorithms are more sample efficient than their model-free counterparts.
We propose a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models.
We show that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging tasks.
arXiv Detail & Related papers (2021-12-16T15:33:11Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Double Meta-Learning for Data Efficient Policy Optimization in
Non-Stationary Environments [12.45281856559346]
We are interested in learning models of non-stationary environments, which can be framed as a multi-task learning problem.
Model-free reinforcement learning algorithms can achieve good performance in multi-task learning at a cost of extensive sampling.
While model-based approaches are among the most data efficient learning algorithms, they still struggle with complex tasks and model uncertainties.
arXiv Detail & Related papers (2020-11-21T03:19:35Z) - Domain Knowledge Integration By Gradient Matching For Sample-Efficient
Reinforcement Learning [0.0]
We propose a gradient matching algorithm to improve sample efficiency by utilizing target slope information from the dynamics to aid the model-free learner.
We demonstrate this by presenting a technique for matching the gradient information from the model-based learner with the model-free component in an abstract low-dimensional space.
arXiv Detail & Related papers (2020-05-28T05:02:47Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.