論文の概要: CAD-Unet: A Capsule Network-Enhanced Unet Architecture for Accurate Segmentation of COVID-19 Lung Infections from CT Images
- arxiv url: http://arxiv.org/abs/2412.06314v1
- Date: Mon, 09 Dec 2024 09:08:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:37.990747
- Title: CAD-Unet: A Capsule Network-Enhanced Unet Architecture for Accurate Segmentation of COVID-19 Lung Infections from CT Images
- Title(参考訳): CAD-Unet:CT画像からのCOVID-19肺感染症の正確なセグメンテーションのためのカプセルネットワーク拡張Unetアーキテクチャ
- Authors: Yijie Dang, Weijun Ma, Xiaohu Luo,
- Abstract要約: 医療画像は、新型コロナウイルスの肺炎を診断するための主要な手段となっている。
本稿では,新たにCAD-Unetと呼ばれる深層ネットワークアーキテクチャを導入する。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License:
- Abstract: Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity between infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. \noindent Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.
- Abstract(参考訳): 2019年に新型コロナウイルスのパンデミックが流行して以来、医療画像は新型コロナウイルスの肺炎を診断するための主要な手段として現れてきた。
臨床環境では、CT画像からの肺感染症のセグメンテーションは、新型コロナウイルスの迅速かつ正確な定量化と診断を可能にする。
肺内でのCOVID-19感染症の分離は、主に不明瞭な境界線と、地面ガラスの不透明な症状によって示される限られたコントラストのために、深刻な課題となる。
さらに、浸潤物、肺組織、肺壁の相違により、このセグメンテーション作業はさらに複雑になる。
これらの課題に対処するために, CAD-Unetと呼ばれる新しい深層ネットワークアーキテクチャを導入する。
このアーキテクチャでは、カプセルネットワークは既存のUnetフレームワークに組み込まれている。
カプセルネットワークは、従来の畳み込みニューラルネットワークとは異なる、新しいネットワークアーキテクチャである。
彼らはカプセル間の情報伝達にベクターを使用し、複雑な病変空間情報の抽出を容易にする。
さらに,カプセルエンコーダの経路を設計し,カプセルエンコーダとアンセットエンコーダの結合経路を確立する。
この設計は、効率的な情報融合を実現しつつ、両方のネットワーク構造の相補的な利点を最大化する。
最後に、バイナリセグメンテーションタスクとマルチクラスセグメンテーションタスクを含む4つの公開データセットで、広範な実験が行われている。
実験により,提案モデルのセグメンテーション性能が優れていることを示した。
コードはhttps://github.com/AmanoTooko-jie/CAD-Unet.comでリリースされた。
関連論文リスト
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
本稿では,MDFI-Net という DPCN に基づく機能拡張型インタラクションネットワークを提案する。
提案したMDFI-Netは,公開データセットの最先端手法よりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2024-10-20T16:42:22Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Netは、CT画像から自動的に新型コロナウイルスの肺感染症を分離するための新しいネットワークである。
BCS-Netはエンコーダ-デコーダアーキテクチャに従っており、多くの設計はデコーダのステージに焦点を当てている。
BCSRブロックでは、アテンション誘導グローバルコンテキスト(AGGC)モジュールがデコーダの最も価値のあるエンコーダ機能を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-07-17T08:54:07Z) - A Deep Ensemble Learning Approach to Lung CT Segmentation for COVID-19
Severity Assessment [0.5512295869673147]
新型コロナウイルス患者の肺CTの分類的セグメンテーションに対する新しい深層学習手法を提案する。
病理組織は正常な肺組織,非肺領域,および2つの異なる,しかし視覚的に類似した,病理組織に区分した。
提案するフレームワークは,3つのCOVID-19データセットの競合結果と優れた一般化機能を実現する。
論文 参考訳(メタデータ) (2022-07-05T21:28:52Z) - COVID-Net CT-S: 3D Convolutional Neural Network Architectures for
COVID-19 Severity Assessment using Chest CT Images [85.00197722241262]
我々は、新型コロナウイルス感染による肺疾患の重症度を予測するための深層畳み込みニューラルネットワークであるCOVID-Net CT-Sを紹介した。
3D残像設計を利用して、新型コロナウイルスの肺疾患の重症度を特徴付ける容積的視覚指標を学習する。
論文 参考訳(メタデータ) (2021-05-04T04:44:41Z) - Quadruple Augmented Pyramid Network for Multi-class COVID-19
Segmentation via CT [1.6815638149823744]
新型コロナウイルス(COVID-19)は、世界で最も深刻な感染症の1つとなっています。
本稿では,放射線科医が肺の容積を推定するためのマルチクラスctセグメンテーションを提案する。
論文 参考訳(メタデータ) (2021-03-09T16:48:15Z) - Exploiting Shared Knowledge from Non-COVID Lesions for
Annotation-Efficient COVID-19 CT Lung Infection Segmentation [10.667692828593125]
新型コロナウイルスの肺感染分画における相関駆動型協調学習モデルを提案する。
我々は、抽出された特徴間の関係の整合性を調整するために、COVIDと非COVIDの病変間の共通知識を利用する。
本手法は,高品質なアノテーションが不足している既存手法と比較して,高いセグメンテーション性能を実現する。
論文 参考訳(メタデータ) (2020-12-31T11:40:29Z) - CHS-Net: A Deep learning approach for hierarchical segmentation of
COVID-19 infected CT images [0.6091702876917281]
新型重症急性呼吸器症候群(SARS-CoV-2)のパンデミックが世界中で広がっています。
CT(Computerd Tomography)、X線などの医療画像は、臓器の構造に関する優れた詳細を提示することにより、患者の診断に重要な役割を果たします。
ディープラーニング技術は、新型コロナウイルスなどの疾患やウイルスの迅速な診断を支援するために、そのようなスキャンを分析する強みを示しています。
論文 参考訳(メタデータ) (2020-12-13T15:02:05Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
我々は,胸部X線(CXR)画像から新型コロナウイルスの症例を検出するための,深層畳み込みニューラルネットワーク設計であるCOVID-Netを紹介した。
著者たちの知る限りでは、COVID-NetはCXRイメージからCOVID-19を検出するための、最初のオープンソースネットワーク設計の1つである。
また,13,870人の患者を対象に,13,975個のCXR画像からなるオープンアクセスベンチマークデータセットであるCOVIDxも導入した。
論文 参考訳(メタデータ) (2020-03-22T12:26:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。