World knowledge-enhanced Reasoning Using Instruction-guided Interactor in Autonomous Driving
- URL: http://arxiv.org/abs/2412.06324v3
- Date: Thu, 02 Jan 2025 04:14:58 GMT
- Title: World knowledge-enhanced Reasoning Using Instruction-guided Interactor in Autonomous Driving
- Authors: Mingliang Zhai, Cheng Li, Zengyuan Guo, Ningrui Yang, Xiameng Qin, Sanyuan Zhao, Junyu Han, Ji Tao, Yuwei Wu, Yunde Jia,
- Abstract summary: We propose a framework, which aims to improve autonomous driving performance under perceptionlimited conditions.
Specifically, we propose a plug-and-play instruction-guided interaction module that bridges modality gaps.
To better integrate world knowledge with driving-related tasks, we have collected and refined a large-scale multi-modal dataset.
- Score: 39.153593828318215
- License:
- Abstract: The Multi-modal Large Language Models (MLLMs) with extensive world knowledge have revitalized autonomous driving, particularly in reasoning tasks within perceivable regions. However, when faced with perception-limited areas (dynamic or static occlusion regions), MLLMs struggle to effectively integrate perception ability with world knowledge for reasoning. These perception-limited regions can conceal crucial safety information, especially for vulnerable road users. In this paper, we propose a framework, which aims to improve autonomous driving performance under perceptionlimited conditions by enhancing the integration of perception capabilities and world knowledge. Specifically, we propose a plug-and-play instruction-guided interaction module that bridges modality gaps and significantly reduces the input sequence length, allowing it to adapt effectively to multi-view video inputs. Furthermore, to better integrate world knowledge with driving-related tasks, we have collected and refined a large-scale multi-modal dataset that includes 2 million natural language QA pairs, 1.7 million grounding task data. To evaluate the model's utilization of world knowledge, we introduce an object-level risk assessment dataset comprising 200K QA pairs, where the questions necessitate multi-step reasoning leveraging world knowledge for resolution. Extensive experiments validate the effectiveness of our proposed method.
Related papers
- SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving [10.041702058108482]
This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs)
Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base.
Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance.
arXiv Detail & Related papers (2025-01-07T05:15:46Z) - Coherence-Driven Multimodal Safety Dialogue with Active Learning for Embodied Agents [23.960719833886984]
M-CoDAL is a multimodal-dialogue system specifically designed for embodied agents to better understand and communicate in safety-critical situations.
Our approach is evaluated using a newly created multimodal dataset comprising 1K safety violations extracted from 2K Reddit images.
Results with this dataset demonstrate that our approach improves resolution of safety situations, user sentiment, as well as safety of the conversation.
arXiv Detail & Related papers (2024-10-18T03:26:06Z) - A Survey on Large Language Model-empowered Autonomous Driving [25.963195890376646]
Development of autonomous driving (AD) technology follows two main technical paths: modularization and end-to-end.
This paper conducts a thorough analysis of the potential applications of large language models (LLMs) in AD systems.
We discuss an important question: Can LLM-based artificial general intelligence (AGI) be a key to achieve high-level AD?
arXiv Detail & Related papers (2024-09-21T15:07:37Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE) to enhance LLM agents in solving open-world interactive tasks.
WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task.
arXiv Detail & Related papers (2024-04-11T03:31:54Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models [30.23228092898916]
We propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge.
Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability.
To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles.
arXiv Detail & Related papers (2023-09-28T09:41:35Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.