Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection
- URL: http://arxiv.org/abs/2412.06332v1
- Date: Mon, 09 Dec 2024 09:32:20 GMT
- Title: Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection
- Authors: Jiawen Kang, Junan Li, Jinchao Li, Xixin Wu, Helen Meng,
- Abstract summary: Speech recognition plays an important role in automatic detection of Alzheimer's disease (AD)
Recent studies have revealed a non-linear relationship between word error rates (WER) and AD detection performance.
This work presents a series of analyses to explore the effect of ASR transcription errors in BERT-based AD detection systems.
- Score: 62.942077348224046
- License:
- Abstract: Automatic Speech Recognition (ASR) plays an important role in speech-based automatic detection of Alzheimer's disease (AD). However, recognition errors could propagate downstream, potentially impacting the detection decisions. Recent studies have revealed a non-linear relationship between word error rates (WER) and AD detection performance, where ASR transcriptions with notable errors could still yield AD detection accuracy equivalent to that based on manual transcriptions. This work presents a series of analyses to explore the effect of ASR transcription errors in BERT-based AD detection systems. Our investigation reveals that not all ASR errors contribute equally to detection performance. Certain words, such as stopwords, despite constituting a large proportion of errors, are shown to play a limited role in distinguishing AD. In contrast, the keywords related to diagnosis tasks exhibit significantly greater importance relative to other words. These findings provide insights into the interplay between ASR errors and the downstream detection model.
Related papers
- DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease [13.38075448636078]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide.
Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals.
Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information.
arXiv Detail & Related papers (2025-02-06T04:00:25Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Error Correction by Paying Attention to Both Acoustic and Confidence References for Automatic Speech Recognition [52.624909026294105]
We propose a non-autoregressive speech error correction method.
A Confidence Module measures the uncertainty of each word of the N-best ASR hypotheses.
The proposed system reduces the error rate by 21% compared with the ASR model.
arXiv Detail & Related papers (2024-06-29T17:56:28Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
Large language models (LLMs) can be successfully used for generative error correction (GER) on top of the automatic speech recognition (ASR) output.
In this work, we aim to overcome such a limitation by infusing acoustic information before generating the predicted transcription through a novel late fusion solution termed Uncertainty-Aware Dynamic Fusion (UADF)
arXiv Detail & Related papers (2024-02-08T07:21:45Z) - Useful Blunders: Can Automated Speech Recognition Errors Improve
Downstream Dementia Classification? [9.275790963007173]
We investigated how errors from automatic speech recognition (ASR) systems affect dementia classification accuracy.
We aimed to assess whether imperfect ASR-generated transcripts could provide valuable information.
arXiv Detail & Related papers (2024-01-10T21:38:03Z) - Alzheimer Disease Classification through ASR-based Transcriptions:
Exploring the Impact of Punctuation and Pauses [6.053166856632848]
Alzheimer's Disease (AD) is the world's leading neurodegenerative disease.
Recent ADReSS challenge provided a dataset for AD classification.
We used the new state-of-the-art Automatic Speech Recognition (ASR) model Whisper to obtain the transcriptions.
arXiv Detail & Related papers (2023-06-06T06:49:41Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - The Far Side of Failure: Investigating the Impact of Speech Recognition
Errors on Subsequent Dementia Classification [8.032686410648274]
Linguistic anomalies detectable in spontaneous speech have shown promise for various clinical applications including screening for dementia and other forms of cognitive impairment.
The impressive performance of self-supervised learning (SSL) automatic speech recognition (ASR) models with curated speech data is not apparent with challenging speech samples from clinical settings.
One of our key findings is that, paradoxically, ASR systems with relatively high error rates can produce transcripts that result in better downstream classification accuracy than classification based on verbatim transcripts.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Improving Distinction between ASR Errors and Speech Disfluencies with
Feature Space Interpolation [0.0]
Fine-tuning pretrained language models (LMs) is a popular approach to automatic speech recognition (ASR) error detection during post-processing.
This paper proposes a scheme to improve existing LM-based ASR error detection systems.
arXiv Detail & Related papers (2021-08-04T02:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.