TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions
- URL: http://arxiv.org/abs/2412.06334v1
- Date: Mon, 09 Dec 2024 09:35:05 GMT
- Title: TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions
- Authors: Ilya A. Petrov, Riccardo Marin, Julian Chibane, Gerard Pons-Moll,
- Abstract summary: We present the first unified model for modeling 3D human-object interaction (HOI)
We generate Human, Object, and Interaction modalities simultaneously with a new three-way diffusion process.
We show the applicability of TriDi to scene population, generating objects for human-contact datasets, and generalization to unseen object geometry.
- Score: 33.58559068016724
- License:
- Abstract: Modeling 3D human-object interaction (HOI) is a problem of great interest for computer vision and a key enabler for virtual and mixed-reality applications. Existing methods work in a one-way direction: some recover plausible human interactions conditioned on a 3D object; others recover the object pose conditioned on a human pose. Instead, we provide the first unified model - TriDi which works in any direction. Concretely, we generate Human, Object, and Interaction modalities simultaneously with a new three-way diffusion process, allowing to model seven distributions with one network. We implement TriDi as a transformer attending to the various modalities' tokens, thereby discovering conditional relations between them. The user can control the interaction either as a text description of HOI or a contact map. We embed these two representations into a shared latent space, combining the practicality of text descriptions with the expressiveness of contact maps. Using a single network, TriDi unifies all the special cases of prior work and extends to new ones, modeling a family of seven distributions. Remarkably, despite using a single model, TriDi generated samples surpass one-way specialized baselines on GRAB and BEHAVE in terms of both qualitative and quantitative metrics, and demonstrating better diversity. We show the applicability of TriDi to scene population, generating objects for human-contact datasets, and generalization to unseen object geometry. The project page is available at: https://virtualhumans.mpi-inf.mpg.de/tridi.
Related papers
- GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding [53.42728468191711]
Open-Vocabulary 3D object affordance grounding aims to anticipate action possibilities'' regions on 3D objects with arbitrary instructions.
We propose GREAT (GeometRy-intEntion collAboraTive inference) for Open-Vocabulary 3D Object Affordance Grounding.
arXiv Detail & Related papers (2024-11-29T11:23:15Z) - StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
We propose to use the Human-Object Offset between anchors which are densely sampled from the surface of human mesh and object mesh to represent human-object spatial relation.
Based on this representation, we propose Stacked Normalizing Flow (StackFLOW) to infer the posterior distribution of human-object spatial relations from the image.
During the optimization stage, we finetune the human body pose and object 6D pose by maximizing the likelihood of samples.
arXiv Detail & Related papers (2024-07-30T04:57:21Z) - G-HOP: Generative Hand-Object Prior for Interaction Reconstruction and Grasp Synthesis [57.07638884476174]
G-HOP is a denoising diffusion based generative prior for hand-object interactions.
We represent the human hand via a skeletal distance field to obtain a representation aligned with the signed distance field for the object.
We show that this hand-object prior can then serve as generic guidance to facilitate other tasks like reconstruction from interaction clip and human grasp synthesis.
arXiv Detail & Related papers (2024-04-18T17:59:28Z) - Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models [8.933560282929726]
We introduce a novel affordance representation, named Comprehensive Affordance (ComA)
Given a 3D object mesh, ComA models the distribution of relative orientation and proximity of vertices in interacting human meshes.
We demonstrate that ComA outperforms competitors that rely on human annotations in modeling contact-based affordance.
arXiv Detail & Related papers (2024-01-23T18:59:59Z) - Primitive-based 3D Human-Object Interaction Modelling and Programming [59.47308081630886]
We propose a novel 3D geometric primitive-based language to encode both humans and objects.
We build a new benchmark on 3D HAOI consisting of primitives together with their images.
We believe this primitive-based 3D HAOI representation would pave the way for 3D HAOI studies.
arXiv Detail & Related papers (2023-12-17T13:16:49Z) - CHORUS: Learning Canonicalized 3D Human-Object Spatial Relations from
Unbounded Synthesized Images [10.4286198282079]
We present a method for teaching machines to understand and model the underlying spatial common sense of diverse human-object interactions in 3D.
We show multiple 2D images captured from different viewpoints when humans interact with the same type of objects.
Despite its imperfection of the image quality over real images, we demonstrate that the synthesized images are sufficient to learn the 3D human-object spatial relations.
arXiv Detail & Related papers (2023-08-23T17:59:11Z) - Grounding 3D Object Affordance from 2D Interactions in Images [128.6316708679246]
Grounding 3D object affordance seeks to locate objects' ''action possibilities'' regions in the 3D space.
Humans possess the ability to perceive object affordances in the physical world through demonstration images or videos.
We devise an Interaction-driven 3D Affordance Grounding Network (IAG), which aligns the region feature of objects from different sources.
arXiv Detail & Related papers (2023-03-18T15:37:35Z) - Reconstructing Action-Conditioned Human-Object Interactions Using
Commonsense Knowledge Priors [42.17542596399014]
We present a method for inferring diverse 3D models of human-object interactions from images.
Our method extracts high-level commonsense knowledge from large language models.
We quantitatively evaluate the inferred 3D models on a large human-object interaction dataset.
arXiv Detail & Related papers (2022-09-06T13:32:55Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
We present the first full body human- object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them.
We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup.
arXiv Detail & Related papers (2022-04-14T13:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.