SeFENet: Robust Deep Homography Estimation via Semantic-Driven Feature Enhancement
- URL: http://arxiv.org/abs/2412.06352v1
- Date: Mon, 09 Dec 2024 10:04:14 GMT
- Title: SeFENet: Robust Deep Homography Estimation via Semantic-Driven Feature Enhancement
- Authors: Zeru Shi, Zengxi Zhang, Zhiying Jiang, Ruizhe An, Jinyuan Liu,
- Abstract summary: Images captured in harsh environments often exhibit blurred details, reduced contrast, and color distortion.
We propose a semantic-driven feature enhancement network for robust homography estimation, dubbed SeFENet.
We show that SeFENet significantly outperforms SOTA methods, reducing point match error by at least 41% on the large-scale datasets.
- Score: 15.039768568444002
- License:
- Abstract: Images captured in harsh environments often exhibit blurred details, reduced contrast, and color distortion, which hinder feature detection and matching, thereby affecting the accuracy and robustness of homography estimation. While visual enhancement can improve contrast and clarity, it may introduce visual-tolerant artifacts that obscure the structural integrity of images. Considering the resilience of semantic information against environmental interference, we propose a semantic-driven feature enhancement network for robust homography estimation, dubbed SeFENet. Concretely, we first introduce an innovative hierarchical scale-aware module to expand the receptive field by aggregating multi-scale information, thereby effectively extracting image features under diverse harsh conditions. Subsequently, we propose a semantic-guided constraint module combined with a high-level perceptual framework to achieve degradation-tolerant with semantic feature. A meta-learning-based training strategy is introduced to mitigate the disparity between semantic and structural features. By internal-external alternating optimization, the proposed network achieves implicit semantic-wise feature enhancement, thereby improving the robustness of homography estimation in adverse environments by strengthening the local feature comprehension and context information extraction. Experimental results under both normal and harsh conditions demonstrate that SeFENet significantly outperforms SOTA methods, reducing point match error by at least 41\% on the large-scale datasets.
Related papers
- Semantic Deep Hiding for Robust Unlearnable Examples [33.68037533119807]
Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration.
We propose a Deep Hiding scheme that adaptively hides semantic images enriched with high-level features.
Our proposed method exhibits outstanding robustness for unlearnable examples, demonstrating its efficacy in preventing unauthorized data exploitation.
arXiv Detail & Related papers (2024-06-25T08:05:42Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
We propose a purposeful and interpretable detail-fidelity attention network to progressively process smoothes and details in divide-and-conquer manner.
Particularly, we propose a Hessian filtering for interpretable feature representation which is high-profile for detail inference.
Experiments demonstrate that the proposed methods achieve superior performances over the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T08:31:23Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
We address weakly supervised semantic matching based on a deep network.
We explicitly estimate the foreground regions to suppress the effect of background clutter.
We develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent.
arXiv Detail & Related papers (2020-03-31T22:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.