論文の概要: Measuring Pre-training Data Quality without Labels for Time Series Foundation Models
- arxiv url: http://arxiv.org/abs/2412.06368v1
- Date: Mon, 09 Dec 2024 10:38:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:59:07.949738
- Title: Measuring Pre-training Data Quality without Labels for Time Series Foundation Models
- Title(参考訳): 時系列基礎モデルのためのラベルのない事前学習データ品質の測定
- Authors: Songkang Wen, Vasilii Feofanov, Jianfeng Zhang,
- Abstract要約: 基礎モデルで学習した表現空間の質を評価するための新しい尺度であるコントラスト精度を導入する。
実験の結果,提案手法とモデル精度との正の相関関係を下流タスクの集合上で明らかにした。
- 参考スコア(独自算出の注目度): 10.64362760848387
- License:
- Abstract: Recently, there has been a growing interest in time series foundation models that generalize across different downstream tasks. A key to strong foundation models is a diverse pre-training dataset, which is particularly challenging to collect for time series classification. In this work, we explore the performance of a contrastive-learning-based foundation model as a function of the data used for pre-training. We introduce contrastive accuracy, a new measure to evaluate the quality of the representation space learned by the foundation model. Our experiments reveal the positive correlation between the proposed measure and the accuracy of the model on a collection of downstream tasks. This suggests that the contrastive accuracy can serve as a criterion to search for time series datasets that can enhance the pre-training and improve thereby the foundation model's generalization.
- Abstract(参考訳): 近年,様々な下流タスクを一般化する時系列基盤モデルへの関心が高まっている。
強力な基礎モデルの鍵となるのは、さまざまな事前トレーニングデータセットである。
本研究では,事前学習に使用するデータの関数として,コントラスト学習に基づく基礎モデルの性能について検討する。
基礎モデルで学習した表現空間の質を評価するための新しい尺度であるコントラスト精度を導入する。
実験の結果,提案手法とモデル精度との正の相関関係を下流タスクの集合上で明らかにした。
このことは、コントラスト精度が、事前トレーニングを強化し、基礎モデルの一般化を改善することができる時系列データセットを探索するための基準となることを示唆している。
関連論文リスト
- In-Context Fine-Tuning for Time-Series Foundation Models [18.348874079298298]
特に、複数の時系列例でトリガーできる事前訓練された基礎モデルを設計する。
我々の基礎モデルは、コンテキストウィンドウ内の複数の関連する時系列の例を利用するように特別に訓練されている。
本研究では,テキスト内サンプルを推論時に使用する基盤モデルにより,一般的な予測ベンチマークにおいて,より優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-10-31T16:20:04Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - MOMENT: A Family of Open Time-series Foundation Models [19.0845213853369]
汎用時系列解析のためのオープンソース基盤モデルのファミリであるMOMENTを紹介する。
我々は、タイムシリーズパイル(Time series Pile)と呼ばれる公開時系列のコレクションをコンパイルし、時系列固有の課題に体系的に取り組みます。
我々は、様々なタスクやデータセットに関する時系列基礎モデルを、限られた監督設定で評価するためのベンチマークを設計するための最近の作業に基づいて構築する。
論文 参考訳(メタデータ) (2024-02-06T10:48:46Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Large Pre-trained time series models for cross-domain Time series analysis tasks [20.228846068418765]
Large Pre-trained Time-Series Models (LPTM) は、事前トレーニング中に最適なデータセット固有のセグメンテーション戦略を自動的に識別する適応セグメンテーションの新しい手法である。
LPTMは、最先端のベースラインに比べて最大40%データが少なく、トレーニング時間も50%少ない。
論文 参考訳(メタデータ) (2023-11-19T20:16:16Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Toward a Foundation Model for Time Series Data [34.1973242428317]
基礎モデルは、大規模で多様なデータセットに基づいてトレーニングされた機械学習モデルである。
複数のドメインのラベルのないサンプルを活用することで,効率的な時系列基礎モデルを構築する。
論文 参考訳(メタデータ) (2023-10-05T21:44:50Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。