Low-Rank Matrix Factorizations with Volume-based Constraints and Regularizations
- URL: http://arxiv.org/abs/2412.06380v1
- Date: Mon, 09 Dec 2024 10:58:23 GMT
- Title: Low-Rank Matrix Factorizations with Volume-based Constraints and Regularizations
- Authors: Olivier Vu Thanh,
- Abstract summary: This thesis focuses on volume-based constraints and regularizations designed to enhance interpretability and uniqueness.
Motivated by applications such as blind source separation and missing data imputation, this thesis also proposes efficient algorithms.
- Score: 2.6687460222685226
- License:
- Abstract: Low-rank matrix factorizations are a class of linear models widely used in various fields such as machine learning, signal processing, and data analysis. These models approximate a matrix as the product of two smaller matrices, where the left matrix captures latent features while the right matrix linearly decomposes the data based on these features. There are many ways to define what makes a component "important." Standard LRMFs, such as the truncated singular value decomposition, focus on minimizing the distance between the original matrix and its low-rank approximation. In this thesis, the notion of "importance" is closely linked to interpretability and uniqueness, which are key to obtaining reliable and meaningful results. This thesis thus focuses on volume-based constraints and regularizations designed to enhance interpretability and uniqueness. We first introduce two new volume-constrained LRMFs designed to enhance these properties. The first assumes that data points are naturally bounded (e.g., movie ratings between 1 and 5 stars) and can be explained by convex combinations of features within the same bounds, allowing them to be interpreted in the same way as the data. The second model is more general, constraining the factors to belong to convex polytopes. Then, two variants of volume-regularized LRMFs are proposed. The first minimizes the volume of the latent features, encouraging them to cluster closely together, while the second maximizes the volume of the decompositions, promoting sparse representations. Across all these models, uniqueness is achieved under the core principle that the factors must be "sufficiently scattered" within their respective feasible sets. Motivated by applications such as blind source separation and missing data imputation, this thesis also proposes efficient algorithms that make these models practical for real-world applications.
Related papers
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-23T12:26:25Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
arXiv Detail & Related papers (2023-07-02T13:59:47Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
Real-world machine learning applications are characterized by a huge number of features, leading to computational and memory issues.
We propose a dimensionality reduction algorithm (NonLinCFA) which aggregates non-linear transformations of features with a generic aggregation function.
We also test the algorithms on synthetic and real-world datasets, performing regression and classification tasks, showing competitive performances.
arXiv Detail & Related papers (2023-06-19T19:57:33Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - A Novel Maximum-Entropy-Driven Technique for Low-Rank Orthogonal
Nonnegative Matrix Factorization with $\ell_0$-Norm sparsity Constraint [0.0]
In data-driven control and machine learning, a common requirement involves breaking down large matrices into smaller, low-rank factors.
This paper introduces an innovative solution to the orthogonal nonnegative matrix factorization (ONMF) problem.
The proposed method achieves comparable or improved reconstruction errors in line with the literature.
arXiv Detail & Related papers (2022-10-06T04:30:59Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Identifiability in Exact Two-Layer Sparse Matrix Factorization [0.0]
Sparse matrix factorization is the problem of approximating a matrix Z by a product of L sparse factors X(L) X(L--1).
This paper focuses on identifiability issues that appear in this problem, in view of better understanding under which sparsity constraints the problem is well-posed.
arXiv Detail & Related papers (2021-10-04T07:56:37Z) - Statistical limits of dictionary learning: random matrix theory and the
spectral replica method [28.54289139061295]
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting.
We introduce a novel combination of the replica method from statistical mechanics together with random matrix theory, coined spectral replica method.
arXiv Detail & Related papers (2021-09-14T12:02:32Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.