Entrywise error bounds for low-rank approximations of kernel matrices
- URL: http://arxiv.org/abs/2405.14494v2
- Date: Wed, 30 Oct 2024 17:17:22 GMT
- Title: Entrywise error bounds for low-rank approximations of kernel matrices
- Authors: Alexander Modell,
- Abstract summary: We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
- Score: 55.524284152242096
- License:
- Abstract: In this paper, we derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition (or singular value decomposition). While this approximation is well-known to be optimal with respect to the spectral and Frobenius norm error, little is known about the statistical behaviour of individual entries. Our error bounds fill this gap. A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues, which takes inspiration from the field of Random Matrix Theory. Finally, we validate our theory with an empirical study of a collection of synthetic and real-world datasets.
Related papers
- A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
We propose a framework for the analysis of the low-rank approximation error in Frobenius norm for centered and non-standard matrices.
Under minimal assumptions, we derive accurate bounds in expectation and probability.
Our bounds have clear interpretations that enable us to derive properties and motivate practical choices.
arXiv Detail & Related papers (2024-05-08T04:51:56Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
This paper tackles the challenge of computing confidence bounds on the individual entries of eigenvectors of a covariance matrix of fixed dimension.
We derive a method to bound the entries of the inverse covariance matrix, the so-called precision matrix.
As an application of these results, we demonstrate a new statistical test, which allows us to test for non-zero values of the precision matrix.
arXiv Detail & Related papers (2022-08-25T10:12:53Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Statistical limits of dictionary learning: random matrix theory and the
spectral replica method [28.54289139061295]
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting.
We introduce a novel combination of the replica method from statistical mechanics together with random matrix theory, coined spectral replica method.
arXiv Detail & Related papers (2021-09-14T12:02:32Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
Nonnegative Matrix Factorization (NMF) is a widely-used data analysis technique, and has yielded impressive results in many real-world tasks.
In this study, an Entropy Minimizing Matrix Factorization framework (EMMF) is developed to tackle the above problem.
Considering that the outliers are usually much less than the normal samples, a new entropy loss function is established for matrix factorization.
arXiv Detail & Related papers (2021-03-24T21:08:43Z) - Adversarial Robust Low Rank Matrix Estimation: Compressed Sensing and Matrix Completion [2.0257616108612373]
We deal with matrix compressed sensing, including lasso as a partial problem, and matrix completion.
We propose a simple unified approach based on a combination of the Huber loss function and the nuclear norm penalization.
arXiv Detail & Related papers (2020-10-25T02:32:07Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
We develop a relative error bound for nuclear norm regularized matrix completion.
We derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix.
arXiv Detail & Related papers (2015-04-26T13:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.