論文の概要: Gentle robustness implies Generalization
- arxiv url: http://arxiv.org/abs/2412.06381v1
- Date: Mon, 09 Dec 2024 10:59:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:10.535318
- Title: Gentle robustness implies Generalization
- Title(参考訳): ジェントル・ロバスト性は一般化を意味する
- Authors: Khoat Than, Dat Phan, Giang Vu,
- Abstract要約: モデルに依存し、既存のロバスト性に基づくものよりも確実に厳密な、新しい境界のクラスを提示する。
以前のものとは異なり、我々の境界はサンプルの数が増えるにつれて最良の分類器の真の誤差に収束することが保証される。
我々はさらに広範な実験を行い、ImageNetから事前訓練された大規模なディープニューラルネットワークでは、2つの境界がしばしば空白でないことを発見した。
- 参考スコア(独自算出の注目度): 1.2630732866686982
- License:
- Abstract: Robustness and generalization ability of machine learning models are of utmost importance in various application domains. There is a wide interest in efficient ways to analyze those properties. One important direction is to analyze connection between those two properties. Prior theories suggest that a robust learning algorithm can produce trained models with a high generalization ability. However, we show in this work that the existing error bounds are vacuous for the Bayes optimal classifier which is the best among all measurable classifiers for a classification problem with overlapping classes. Those bounds cannot converge to the true error of this ideal classifier. This is undesirable, surprizing, and never known before. We then present a class of novel bounds, which are model-dependent and provably tighter than the existing robustness-based ones. Unlike prior ones, our bounds are guaranteed to converge to the true error of the best classifier, as the number of samples increases. We further provide an extensive experiment and find that two of our bounds are often non-vacuous for a large class of deep neural networks, pretrained from ImageNet.
- Abstract(参考訳): 機械学習モデルのロバスト性と一般化能力は、様々なアプリケーション領域において最も重要である。
これらの特性を効率的に分析する方法には、幅広い関心がある。
重要な方向の1つは、これらの2つの特性間の接続を分析することである。
従来の理論では、頑健な学習アルゴリズムは、高い一般化能力を持つ訓練されたモデルを生成することができることを示唆している。
しかし、この研究において、既存の誤差境界は、重複クラスを持つ分類問題に対するすべての可測分類器の中で最良のベイズ最適分類器に対して空であることを示す。
これらの境界は、この理想的な分類器の真の誤りに収束することができない。
これは望ましくないことであり、仮定しておらず、これまでも知られていなかった。
次に、モデルに依存し、既存のロバスト性に基づくものよりも確実に厳密な、新しい境界のクラスを示す。
以前のものとは異なり、我々の境界はサンプルの数が増えるにつれて最良の分類器の真の誤差に収束することが保証される。
我々はさらに広範な実験を行い、ImageNetから事前訓練された大規模なディープニューラルネットワークでは、2つの境界がしばしば空白でないことを発見した。
関連論文リスト
- How many classifiers do we need? [50.69951049206484]
分類器間の不一致と偏極が、個々の分類器を集約することで得られる性能向上とどのように関連しているかを詳細に分析する。
分類器の個数で不一致の挙動を示す。
我々の理論と主張は、様々なタイプのニューラルネットワークを用いた画像分類タスクに関する経験的な結果によって裏付けられている。
論文 参考訳(メタデータ) (2024-11-01T02:59:56Z) - Understanding the Double Descent Phenomenon in Deep Learning [49.1574468325115]
このチュートリアルは、古典的な統計学習の枠組みを設定し、二重降下現象を導入する。
いくつかの例を見て、セクション2では、二重降下において重要な役割を果たすと思われる帰納的バイアスを導入している。
第3節は2つの線形モデルで二重降下を探索し、最近の関連する研究から他の視点を提供する。
論文 参考訳(メタデータ) (2024-03-15T16:51:24Z) - Precise Asymptotic Generalization for Multiclass Classification with
Overparameterized Linear Models [4.093769373833101]
Subramanian et al.'22 の予想では、データポイント、特徴、クラスの数はすべて一緒になる。
我々の新しい下限は情報理論の強い逆に似ており、それらは誤分類率が0か1に近づくことを証明している。
厳密な解析の鍵はハンソン・ライトの不等式の新しい変種であり、スパースラベルの多重クラス問題に広く有用である。
論文 参考訳(メタデータ) (2023-06-23T00:59:15Z) - Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
我々は,任意の離散データセット上の複数クラス分類器に対するテスト時間攻撃の存在下での損失に対する情報理論的下位境界を求める。
本稿では,データと敵対的制約から競合ハイパーグラフを構築する際に発生する最適0-1損失を求めるための一般的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-21T15:17:13Z) - Soft-margin classification of object manifolds [0.0]
単一対象の複数の出現に対応する神経集団は、神経応答空間における多様体を定義する。
そのような多様体を分類する能力は、オブジェクト認識やその他の計算タスクは多様体内の変数に無関心な応答を必要とするため、興味がある。
ソフトマージン分類器は、より大きなアルゴリズムのクラスであり、トレーニングセット外のパフォーマンスを最適化するためにアプリケーションで使われる追加の正規化パラメータを提供する。
論文 参考訳(メタデータ) (2022-03-14T12:23:36Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
線形ニューラルネットワークは、サブファンクションに分割することができる。
サブファンクションは、独自のアクティベーションパターン、ドメイン、経験的エラーを持っている。
完全なネットワークに対する経験的エラーは、サブファンクションに対する期待として記述できる。
論文 参考訳(メタデータ) (2021-06-15T18:34:41Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Classifier-independent Lower-Bounds for Adversarial Robustness [13.247278149124757]
理論的には、テストタイムの逆数と雑音の分類例に対するロバスト性の限界を解析する。
最適輸送理論を用いて、与えられた分類問題に対して分類器ができるベイズ最適誤差の変分式を導出する。
一般的な距離ベース攻撃の場合,ベイズ最適誤差に対して明らかな下限を導出する。
論文 参考訳(メタデータ) (2020-06-17T16:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。