GameArena: Evaluating LLM Reasoning through Live Computer Games
- URL: http://arxiv.org/abs/2412.06394v5
- Date: Sat, 15 Feb 2025 22:03:16 GMT
- Title: GameArena: Evaluating LLM Reasoning through Live Computer Games
- Authors: Lanxiang Hu, Qiyu Li, Anze Xie, Nan Jiang, Ion Stoica, Haojian Jin, Hao Zhang,
- Abstract summary: We introduce GameArena, a benchmark to evaluate large language models (LLMs) reasoning capabilities through interactive gameplay with humans.
GameArena consists of three games to test specific reasoning capabilities (e.g., deductive and inductive reasoning) while keeping participants entertained and engaged.
We collect over 2000 game sessions and provide detailed assessments of various reasoning capabilities for five state-of-the-art LLMs.
- Score: 25.415321902887598
- License:
- Abstract: Evaluating the reasoning abilities of large language models (LLMs) is challenging. Existing benchmarks often depend on static datasets, which are vulnerable to data contamination and may get saturated over time, or on binary live human feedback that conflates reasoning with other abilities. As the most prominent dynamic benchmark, Chatbot Arena evaluates open-ended questions in real-world settings, but lacks the granularity in assessing specific reasoning capabilities. We introduce GameArena, a dynamic benchmark designed to evaluate LLM reasoning capabilities through interactive gameplay with humans. GameArena consists of three games designed to test specific reasoning capabilities (e.g., deductive and inductive reasoning), while keeping participants entertained and engaged. We analyze the gaming data retrospectively to uncover the underlying reasoning processes of LLMs and measure their fine-grained reasoning capabilities. We collect over 2000 game sessions and provide detailed assessments of various reasoning capabilities for five state-of-the-art LLMs. Our user study with 100 participants suggests that GameArena improves user engagement compared to Chatbot Arena. For the first time, GameArena enables the collection of step-by-step LLM reasoning data in the wild.
Related papers
- Triangulating LLM Progress through Benchmarks, Games, and Cognitive Tests [89.09172401497213]
We examine three evaluation paradigms: large question-answering benchmarks, interactive games, and cognitive tests.
We compile a suite of targeted tests that measure cognitive abilities deemed essential for effective language use.
Our analyses reveal that interactive games are superior to standard benchmarks in discriminating models.
arXiv Detail & Related papers (2025-02-20T08:36:58Z) - CounterBench: A Benchmark for Counterfactuals Reasoning in Large Language Models [5.409370027524351]
We evaluate the performance of large language models (LLMs) in counterfactual reasoning.
We introduce a new benchmark dataset, CounterBench, comprising 1K counterfactual reasoning questions.
arXiv Detail & Related papers (2025-02-16T06:19:37Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoT is a gaming arena designed for rigorous assessment of Large Language Models.
We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics.
Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.
arXiv Detail & Related papers (2024-12-18T08:32:53Z) - Evaluating Creativity and Deception in Large Language Models: A Simulation Framework for Multi-Agent Balderdash [6.65572931991284]
Large Language Models (LLMs) have shown impressive capabilities in complex tasks and interactive environments.
This paper introduces a simulation framework utilizing the game Balderdash to evaluate both the creativity and logical reasoning of LLMs.
arXiv Detail & Related papers (2024-11-15T18:42:48Z) - When Reasoning Meets Information Aggregation: A Case Study with Sports Narratives [46.04238534224658]
We examine the critical role of information aggregation in reasoning by requiring the LLM to analyze sports narratives.
We conduct comprehensive experiments with real NBA basketball data and present SportsGen, a new method to synthesize game narratives.
Our findings show that most models, including GPT-4o, often fail to accurately aggregate basketball scores due to frequent scoring patterns.
arXiv Detail & Related papers (2024-06-17T20:49:35Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - Avalon's Game of Thoughts: Battle Against Deception through Recursive
Contemplation [80.126717170151]
This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments.
We introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information.
arXiv Detail & Related papers (2023-10-02T16:27:36Z) - GameEval: Evaluating LLMs on Conversational Games [93.40433639746331]
We propose GameEval, a novel approach to evaluating large language models (LLMs)
GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms.
We show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems.
arXiv Detail & Related papers (2023-08-19T14:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.