Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation
- URL: http://arxiv.org/abs/2412.06531v1
- Date: Mon, 09 Dec 2024 14:34:31 GMT
- Title: Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation
- Authors: Egor Cherepanov, Nikita Kachaev, Artem Zholus, Alexey K. Kovalev, Aleksandr I. Panov,
- Abstract summary: The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL)
The term memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities.
This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types.
- Score: 39.69790911626182
- License:
- Abstract: The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the utilization of past information, adaptation to novel environments, and improved sample efficiency. However, the term ``memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term versus short-term memory and declarative versus procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to.
Related papers
- On the Structural Memory of LLM Agents [20.529239764968654]
Memory plays a pivotal role in enabling large language model(LLM)-based agents to engage in complex and long-term interactions.
This paper investigates how memory structures and memory retrieval methods affect the performance of LLM-based agents.
arXiv Detail & Related papers (2024-12-17T04:30:00Z) - MADial-Bench: Towards Real-world Evaluation of Memory-Augmented Dialogue Generation [15.64077949677469]
We present a novel Memory-Augmented Dialogue Benchmark (MADail-Bench) to evaluate the effectiveness of memory-augmented dialogue systems (MADS)
The benchmark assesses two tasks separately: memory retrieval and memory recognition with the incorporation of both passive and proactive memory recall data.
Results from cutting-edge embedding models and large language models on this benchmark indicate the potential for further advancement.
arXiv Detail & Related papers (2024-09-23T17:38:41Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities.
LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems.
The key component to support agent-environment interactions is the memory of the agents.
arXiv Detail & Related papers (2024-04-21T01:49:46Z) - A Machine with Short-Term, Episodic, and Semantic Memory Systems [9.42475956340287]
Inspired by the cognitive science theory of the explicit human memory systems, we have modeled an agent with short-term, episodic, and semantic memory systems.
Our experiments indicate that an agent with human-like memory systems can outperform an agent without this memory structure in the environment.
arXiv Detail & Related papers (2022-12-05T08:34:23Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Pin the Memory: Learning to Generalize Semantic Segmentation [68.367763672095]
We present a novel memory-guided domain generalization method for semantic segmentation based on meta-learning framework.
Our method abstracts the conceptual knowledge of semantic classes into categorical memory which is constant beyond the domains.
arXiv Detail & Related papers (2022-04-07T17:34:01Z) - Learning What to Memorize: Using Intrinsic Motivation to Form Useful
Memory in Partially Observable Reinforcement Learning [0.0]
In order to learn in an ambiguous environment, an agent has to keep previous perceptions in a memory.
In this study, we follow the idea of giving the control of the memory to the agent by allowing it to have memory-changing actions.
This learning mechanism is supported by an intrinsic motivation to memorize rare observations that can help the agent to disambiguate its state in the environment.
arXiv Detail & Related papers (2021-10-25T11:15:54Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
We introduce variational semantic memory into meta-learning to acquire long-term knowledge for few-shot learning.
The semantic memory is grown from scratch and gradually consolidated by absorbing information from tasks it experiences.
We formulate memory recall as the variational inference of a latent memory variable from addressed contents.
arXiv Detail & Related papers (2020-10-20T15:05:26Z) - The act of remembering: a study in partially observable reinforcement
learning [24.945756871291348]
Reinforcement Learning (RL) agents typically learn memoryless policies that only consider the last observation when selecting actions.
We provide the agent with an external memory and additional actions to control what, if anything, is written to the memory.
Our novel forms of memory outperform binary and LSTM-based memory in well-established partially observable domains.
arXiv Detail & Related papers (2020-10-05T02:56:43Z) - PeTra: A Sparsely Supervised Memory Model for People Tracking [50.98911178059019]
We propose PeTra, a memory-augmented neural network designed to track entities in its memory slots.
We empirically compare key modeling choices, finding that we can simplify several aspects of the design of the memory module while retaining strong performance.
PeTra is highly effective in both evaluations, demonstrating its ability to track people in its memory despite being trained with limited annotation.
arXiv Detail & Related papers (2020-05-06T17:45:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.