Learning What to Memorize: Using Intrinsic Motivation to Form Useful
Memory in Partially Observable Reinforcement Learning
- URL: http://arxiv.org/abs/2110.12810v1
- Date: Mon, 25 Oct 2021 11:15:54 GMT
- Title: Learning What to Memorize: Using Intrinsic Motivation to Form Useful
Memory in Partially Observable Reinforcement Learning
- Authors: Alper Demir
- Abstract summary: In order to learn in an ambiguous environment, an agent has to keep previous perceptions in a memory.
In this study, we follow the idea of giving the control of the memory to the agent by allowing it to have memory-changing actions.
This learning mechanism is supported by an intrinsic motivation to memorize rare observations that can help the agent to disambiguate its state in the environment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning faces an important challenge in partial observable
environments that has long-term dependencies. In order to learn in an ambiguous
environment, an agent has to keep previous perceptions in a memory. Earlier
memory based approaches use a fixed method to determine what to keep in the
memory, which limits them to certain problems. In this study, we follow the
idea of giving the control of the memory to the agent by allowing it to have
memory-changing actions. This learning mechanism is supported by an intrinsic
motivation to memorize rare observations that can help the agent to
disambiguate its state in the environment. Our approach is experimented and
analyzed on several partial observable tasks with long-term dependencies and
compared with other memory based methods.
Related papers
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - In-Memory Learning: A Declarative Learning Framework for Large Language
Models [56.62616975119192]
We propose a novel learning framework that allows agents to align with their environment without relying on human-labeled data.
This entire process transpires within the memory components and is implemented through natural language.
We demonstrate the effectiveness of our framework and provide insights into this problem.
arXiv Detail & Related papers (2024-03-05T08:25:11Z) - Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
We conduct the first comprehensive analysis to explore language models' memorization during fine-tuning across tasks.
Our studies with open-sourced and our own fine-tuned LMs across various tasks indicate that memorization presents a strong disparity among different fine-tuning tasks.
We provide an intuitive explanation of this task disparity via sparse coding theory and unveil a strong correlation between memorization and attention score distribution.
arXiv Detail & Related papers (2023-10-10T15:41:26Z) - Saliency-Guided Hidden Associative Replay for Continual Learning [13.551181595881326]
Continual Learning is a burgeoning domain in next-generation AI, focusing on training neural networks over a sequence of tasks akin to human learning.
This paper presents the Saliency Guided Hidden Associative Replay for Continual Learning.
This novel framework synergizes associative memory with replay-based strategies. SHARC primarily archives salient data segments via sparse memory encoding.
arXiv Detail & Related papers (2023-10-06T15:54:12Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - Evaluating Long-Term Memory in 3D Mazes [10.224858246626171]
Memory Maze is a 3D domain of randomized mazes designed for evaluating long-term memory in agents.
Unlike existing benchmarks, Memory Maze measures long-term memory separate from confounding agent abilities.
We find that current algorithms benefit from training with truncated backpropagation through time and succeed on small mazes, but fall short of human performance on the large mazes.
arXiv Detail & Related papers (2022-10-24T16:32:28Z) - Pin the Memory: Learning to Generalize Semantic Segmentation [68.367763672095]
We present a novel memory-guided domain generalization method for semantic segmentation based on meta-learning framework.
Our method abstracts the conceptual knowledge of semantic classes into categorical memory which is constant beyond the domains.
arXiv Detail & Related papers (2022-04-07T17:34:01Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
We introduce variational semantic memory into meta-learning to acquire long-term knowledge for few-shot learning.
The semantic memory is grown from scratch and gradually consolidated by absorbing information from tasks it experiences.
We formulate memory recall as the variational inference of a latent memory variable from addressed contents.
arXiv Detail & Related papers (2020-10-20T15:05:26Z) - The act of remembering: a study in partially observable reinforcement
learning [24.945756871291348]
Reinforcement Learning (RL) agents typically learn memoryless policies that only consider the last observation when selecting actions.
We provide the agent with an external memory and additional actions to control what, if anything, is written to the memory.
Our novel forms of memory outperform binary and LSTM-based memory in well-established partially observable domains.
arXiv Detail & Related papers (2020-10-05T02:56:43Z) - Self-Attentive Associative Memory [69.40038844695917]
We propose to separate the storage of individual experiences (item memory) and their occurring relationships (relational memory)
We achieve competitive results with our proposed two-memory model in a diversity of machine learning tasks.
arXiv Detail & Related papers (2020-02-10T03:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.