論文の概要: Diff5T: Benchmarking Human Brain Diffusion MRI with an Extensive 5.0 Tesla K-Space and Spatial Dataset
- arxiv url: http://arxiv.org/abs/2412.06666v1
- Date: Mon, 09 Dec 2024 17:04:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:39.728169
- Title: Diff5T: Benchmarking Human Brain Diffusion MRI with an Extensive 5.0 Tesla K-Space and Spatial Dataset
- Title(参考訳): Diff5T: Extensive 5.0 Tesla K-Spaceと空間データセットによるヒト脳拡散MRIのベンチマーク
- Authors: Shanshan Wang, Shoujun Yu, Jian Cheng, Sen Jia, Changjun Tie, Jiayu Zhu, Haohao Peng, Yijing Dong, Jianzhong He, Fan Zhang, Yaowen Xing, Xiuqin Jia, Qi Yang, Qiyuan Tian, Hua Guo, Guobin Li, Hairong Zheng,
- Abstract要約: Diff5Tは、ヒト脳に焦点を当てたTeslaの5.0拡散MRIデータセットである。
このデータセットは、様々なイメージングプロトコルを用いて取得された生のk空間データと再構成された拡散画像を含む。
- 参考スコア(独自算出の注目度): 17.693947808958047
- License:
- Abstract: Diffusion magnetic resonance imaging (dMRI) provides critical insights into the microstructural and connectional organization of the human brain. However, the availability of high-field, open-access datasets that include raw k-space data for advanced research remains limited. To address this gap, we introduce Diff5T, a first comprehensive 5.0 Tesla diffusion MRI dataset focusing on the human brain. This dataset includes raw k-space data and reconstructed diffusion images, acquired using a variety of imaging protocols. Diff5T is designed to support the development and benchmarking of innovative methods in artifact correction, image reconstruction, image preprocessing, diffusion modelling and tractography. The dataset features a wide range of diffusion parameters, including multiple b-values and gradient directions, allowing extensive research applications in studying human brain microstructure and connectivity. With its emphasis on open accessibility and detailed benchmarks, Diff5T serves as a valuable resource for advancing human brain mapping research using diffusion MRI, fostering reproducibility, and enabling collaboration across the neuroscience and medical imaging communities.
- Abstract(参考訳): 拡散磁気共鳴イメージング(dMRI)は、人間の脳の微細構造と接続構造に重要な洞察を与える。
しかし、先進的な研究のための生のk空間データを含む、高フィールドでオープンアクセス可能なデータセットは依然として限られている。
このギャップに対処するために、人間の脳に焦点を当てた最初の包括的5.0テスラ拡散MRIデータセットであるDiff5Tを紹介します。
このデータセットは、様々なイメージングプロトコルを用いて取得された生のk空間データと再構成された拡散画像を含む。
Diff5Tは、アーティファクト修正、画像再構成、画像前処理、拡散モデリング、トラクトグラフィーにおける革新的な手法の開発とベンチマークをサポートするように設計されている。
このデータセットは、複数のb値や勾配方向を含む幅広い拡散パラメータを特徴とし、人間の脳の微細構造と接続性の研究に広く応用できる。
オープンアクセシビリティと詳細なベンチマークを重視したDiff5Tは、拡散MRIを用いたヒト脳マッピング研究の進展、再現性の向上、神経科学と医用画像のコミュニティ間のコラボレーションの実現に有用なリソースである。
関連論文リスト
- NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Robust Fiber Orientation Distribution Function Estimation Using Deep Constrained Spherical Deconvolution for Diffusion MRI [9.570365838548073]
測定したDW-MRI信号をモデル化するための一般的なプラクティスは、繊維配向分布関数(fODF)である。
DW-MRIの取得において、測定変数(サイト内およびサイト内変動、ハードウェア性能、シーケンス設計など)は避けられない。
既存のモデルベース手法(例えば、制約付き球面デコンボリューション(CSD))や学習ベース手法(例えば、ディープラーニング(DL))は、fODFモデリングにおいてそのような変動を明示的に考慮していない。
本稿では,データ駆動型深部制約付き球面デコンボリューション法を提案する。
論文 参考訳(メタデータ) (2023-06-05T14:06:40Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。