論文の概要: ILLUME: Illuminating Your LLMs to See, Draw, and Self-Enhance
- arxiv url: http://arxiv.org/abs/2412.06673v1
- Date: Mon, 09 Dec 2024 17:11:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:22.067679
- Title: ILLUME: Illuminating Your LLMs to See, Draw, and Self-Enhance
- Title(参考訳): ILLUME: LLMの画面表示、描画、セルフエンハンス
- Authors: Chunwei Wang, Guansong Lu, Junwei Yang, Runhui Huang, Jianhua Han, Lu Hou, Wei Zhang, Hang Xu,
- Abstract要約: 本稿では,一大言語モデルにマルチモーダル理解と生成機能をシームレスに統合する統合型マルチモーダル言語モデル (MLLM) であるILLUMEを紹介する。
画像テキストアライメントに通常必要となる大規模なデータセットサイズに対処するため,視覚トークン化器の設計によるデータ効率の向上を提案する。
従来の研究で探索されていない理解と生成能力の相乗的向上を促進するために,我々は,新しい自己向上型マルチモーダルアライメント方式を導入する。
- 参考スコア(独自算出の注目度): 47.53085562765585
- License:
- Abstract: In this paper, we introduce ILLUME, a unified multimodal large language model (MLLM) that seamlessly integrates multimodal understanding and generation capabilities within a single large language model through a unified next-token prediction formulation. To address the large dataset size typically required for image-text alignment, we propose to enhance data efficiency through the design of a vision tokenizer that incorporates semantic information and a progressive multi-stage training procedure. This approach reduces the dataset size to just 15M for pretraining -- over four times fewer than what is typically needed -- while achieving competitive or even superior performance with existing unified MLLMs, such as Janus. Additionally, to promote synergistic enhancement between understanding and generation capabilities, which is under-explored in previous works, we introduce a novel self-enhancing multimodal alignment scheme. This scheme supervises the MLLM to self-assess the consistency between text descriptions and self-generated images, facilitating the model to interpret images more accurately and avoid unrealistic and incorrect predictions caused by misalignment in image generation. Based on extensive experiments, our proposed ILLUME stands out and competes with state-of-the-art unified MLLMs and specialized models across various benchmarks for multimodal understanding, generation, and editing.
- Abstract(参考訳): 本稿では,統一型マルチモーダル大言語モデル(MLLM)であるILLUMEを紹介する。
画像テキストアライメントに一般的に必要とされる大規模なデータセットサイズに対処するため,セマンティック情報とプログレッシブな多段階学習手順を組み込んだ視覚トークン化器の設計により,データ効率を向上させることを提案する。
このアプローチにより、データセットのサイズは、Janusのような既存の統一MLLMとの競争力や優れたパフォーマンスを達成しながら、事前トレーニング(通常よりも4倍以上少ない)のためにわずか15Mに縮小される。
さらに,従来の研究で未検討であった理解と生成能力の相乗的向上を促進するために,新たな自己向上型マルチモーダルアライメント方式を導入する。
このスキームはMLLMを監督し、テキスト記述と自己生成画像の一貫性を自己評価し、画像をより正確に解釈し、画像生成の誤りによる非現実的で誤った予測を避ける。
提案するILLUMEは,マルチモーダル理解,生成,編集を行う様々なベンチマークにおいて,最先端の統一MLLMや特殊なモデルと競合する。
関連論文リスト
- SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
画像の理解と生成の両方が可能なシンプルだが強力なエンコーダのないMLLMであるSynerGen-VLを提案する。
トークンの折り畳み機構と,高分解能画像理解を効果的に支援するビジョンエキスパートベースのプログレッシブアライメント事前学習戦略を導入する。
コードとモデルはリリースされます。
論文 参考訳(メタデータ) (2024-12-12T18:59:26Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEnは、マルチモーダル大言語モデル(MLLM)のマルチモーダル推論能力を高めるために設計された革新的なフレームワークである。
MaVEnは複雑なマルチイメージのシナリオにおけるMLLMの理解を著しく向上するとともに,単一イメージのコンテキストにおけるパフォーマンスも向上することを示す。
論文 参考訳(メタデータ) (2024-08-22T11:57:16Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - ModaVerse: Efficiently Transforming Modalities with LLMs [25.49713745405194]
ModaVerseはマルチモーダルな大規模言語モデルで、様々なモダリティにまたがってコンテンツを解釈・変換できる。
自然言語のレベルで直接動作する新しい入出力(I/O)アライメント機構を提案する。
論文 参考訳(メタデータ) (2024-01-12T06:28:54Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
MLLM(Multimodal Large Language Models)の機能を拡張するために, PVIT( Position-enhanced Visual Instruction Tuning)を提案する。
この統合により、MLLMの画像のより詳細な理解が促進される。
本稿では,提案モデルの優位性を示す定量的実験と定性解析の両方について述べる。
論文 参考訳(メタデータ) (2023-08-25T15:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。