Parkinson's Disease Diagnosis Through Deep Learning: A Novel LSTM-Based Approach for Freezing of Gait Detection
- URL: http://arxiv.org/abs/2412.06709v1
- Date: Mon, 09 Dec 2024 17:58:24 GMT
- Title: Parkinson's Disease Diagnosis Through Deep Learning: A Novel LSTM-Based Approach for Freezing of Gait Detection
- Authors: Aqib Nazir Mir, Iqra Nissar, Mumtaz Ahmed, Sarfaraz Masood, Danish Raza Rizvi,
- Abstract summary: This paper introduces a novel deep learning architecture based on the LSTM network for automatically detecting freezing of gait episodes in Parkinson's disease patients.
The results indicate that our proposed approach surpasses current state-of-the-art models in FOG episode detection, achieving an accuracy of 97.71%, precision of 98%, and specificity of 96%.
- Score: 1.7581090221681177
- License:
- Abstract: Deep learning holds tremendous potential in healthcare for uncovering hidden patterns within extensive clinical datasets, aiding in the diagnosis of various diseases. Parkinson's disease (PD) is a neurodegenerative condition characterized by the deterioration of brain function. In the initial stages of PD, automatic diagnosis poses a challenge due to the similarity in behavior between individuals with PD and those who are healthy. Our objective is to propose an effective model that can aid in the early detection of Parkinson's disease. We employed the VGRF gait signal dataset sourced from Physionet for distinguishing between healthy individuals and those diagnosed with Parkinson's disease. This paper introduces a novel deep learning architecture based on the LSTM network for automatically detecting freezing of gait episodes in Parkinson's disease patients. In contrast to conventional machine learning algorithms, this method eliminates manual feature engineering and proficiently captures prolonged temporal dependencies in gait patterns, thereby improving the diagnosis of Parkinson's disease. The LSTM network resolves the issue of vanishing gradients by employing memory blocks in place of self-connected hidden units, allowing for optimal information assimilation. To prevent overfitting, dropout and L2 regularization techniques have been employed. Additionally, the stochastic gradient-based optimizer Adam is used for the optimization process. The results indicate that our proposed approach surpasses current state-of-the-art models in FOG episode detection, achieving an accuracy of 97.71%, sensitivity of 99%, precision of 98%, and specificity of 96%. This demonstrates its potential as a superior classification method for Parkinson's disease detection.
Related papers
- Determining the severity of Parkinson's disease in patients using a
multi task neural network [0.7499722271664147]
Parkinson's disease is easy to diagnose when it is advanced, but difficult to diagnose in its early stages.
This study analyzes a set of variables that can be easily extracted from voice analysis.
A success rate of 99.15% has been achieved in the problem of predicting whether a person suffers from severe Parkinson's disease or non-severe Parkinson's disease.
arXiv Detail & Related papers (2024-02-08T08:55:34Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
Parkinson's disease is a neurological condition that occurs in nearly 1% of the world's population.
There is not a single blood test or biomarker available to diagnose Parkinson's disease.
No AI tools have been designed to identify the stage of progression.
arXiv Detail & Related papers (2023-12-28T10:30:54Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction.
utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine.
LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores.
arXiv Detail & Related papers (2023-11-09T15:21:10Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Diagnosis of Parkinson's Disease Based on Voice Signals Using SHAP and
Hard Voting Ensemble Method [0.0]
Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's.
PD is typically identified using motor symptoms or other Neuroimaging techniques, such as DATSCAN and SPECT.
These methods are expensive, time-consuming, and unavailable to the general public.
arXiv Detail & Related papers (2022-10-03T19:45:22Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - An Explainable Machine Learning Model for Early Detection of Parkinson's
Disease using LIME on DaTscan Imagery [0.0]
Parkinson's disease (PD) is a degenerative and progressive neurological condition.
Early diagnosis can improve treatment for patients and is performed through dopaminergic imaging techniques like the SPECT DaTscan.
In this study, we propose a machine learning model that accurately classifies any given DaTscan as having Parkinson's disease or not.
arXiv Detail & Related papers (2020-08-01T10:44:03Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.