Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system
- URL: http://arxiv.org/abs/2205.05961v1
- Date: Thu, 12 May 2022 08:59:57 GMT
- Title: Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system
- Authors: Catharina Marie van Alen, Alexander Brenner, Tobias Warnecke and
Julian Varghese
- Abstract summary: We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
- Score: 63.20765930558542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, sensors from smart consumer devices have shown great
diagnostic potential in movement disorders. In this context, data modalities
such as electronic questionnaires, hand movement and voice captures have
successfully captured biomarkers and allowed discrimination between Parkinson's
disease (PD) and healthy controls (HC) or differential diagnosis (DD). However,
to the best of our knowledge, a comprehensive evaluation of assessments with a
multi-modal smart device system has still been lacking. In a prospective study
exploring PD, we used smartwatches and smartphones to collect multi-modal data
from 504 participants, including PD patients, DD and HC. This study aims to
assess the effect of multi-modal vs. single-modal data on PD vs. HC and PD vs.
DD classification, as well as on PD group clustering for subgroup
identification. We were able to show that by combining various modalities,
classification accuracy improved and further PD clusters were discovered.
Related papers
- PULSAR: Graph based Positive Unlabeled Learning with Multi Stream
Adaptive Convolutions for Parkinson's Disease Recognition [1.9482539692051932]
Parkinsons disease (PD) is a neuro-degenerative disorder that affects movement, speech, and coordination.
We present PULSAR, a novel method to screen for PD from webcam-recorded videos of finger-tapping.
We used an adaptive graph convolutional neural network to dynamically learn the temporal graph specific to the finger-tapping task.
arXiv Detail & Related papers (2023-12-10T05:56:20Z) - PD-ADSV: An Automated Diagnosing System Using Voice Signals and Hard
Voting Ensemble Method for Parkinson's Disease [0.0]
Parkinson's disease (PD) is the most widespread movement condition and the second most common neurodegenerative disorder, following Alzheimer's.
Movement symptoms and imaging techniques are the most popular ways to diagnose this disease.
This study provides an autonomous system, i.e., PD-ADSV, for diagnosing PD based on voice signals.
arXiv Detail & Related papers (2023-04-11T17:24:25Z) - Shoupa: An AI System for Early Diagnosis of Parkinson's Disease [1.2862023695904008]
Parkinson's Disease (PD) is a progressive nervous system disorder that has affected more than 5.8 million people, especially the elderly.
Early detection requires neurologists or PD specialists to be involved, which is not accessible to most old people.
We introduce the framework of our developed PD early detection system which combines different tasks evaluating both motor and non-motor symptoms.
arXiv Detail & Related papers (2022-11-28T11:32:17Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments.
In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes.
arXiv Detail & Related papers (2021-07-19T08:19:34Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.