論文の概要: ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
- arxiv url: http://arxiv.org/abs/2412.06745v1
- Date: Mon, 09 Dec 2024 18:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:58.565825
- Title: ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
- Title(参考訳): ONEBenchが全機能をテスト中: オープンエンド機能に関するサンプルレベルベンチマーク
- Authors: Adhiraj Ghosh, Sebastian Dziadzio, Ameya Prabhu, Vishaal Udandarao, Samuel Albanie, Matthias Bethge,
- Abstract要約: 従来の固定テストセットは、ファンデーションモデルのオープンな機能を評価するのに不足しています。
ONEBenchは、個々の評価データセットを統一し、拡張し続けるサンプルプールに統合する新しいテストパラダイムである。
ONEBenchは、テストセットにまたがってサンプルを集約することにより、オリジナルのテストセットでカバーされたもの以上の多様な機能の評価を可能にする。
- 参考スコア(独自算出の注目度): 30.123976500620834
- License:
- Abstract: Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
- Abstract(参考訳): 従来の固定テストセットは、ファンデーションモデルのオープンな機能を評価するのに不足しています。
ONEBench(OpeN-Ended Benchmarking)は,個々の評価データセットを統一的かつ拡張可能なサンプルプールに統合する,新たなテストパラダイムである。
ONEBenchを使えば、興味のある特定の機能に応じて、このプールからカスタムでオープンな評価ベンチマークを生成することができる。
ONEBenchは、テストセット間でサンプルを集約することにより、オーバーフィッティングとデータセットバイアスを緩和しながら、元のテストセットでカバーされたもの以上の多様な機能の評価を可能にする。
最も重要なことは、モデル評価をサンプルレベルのテストを選択して集約する集合プロセスとして捉えていることだ。
タスク固有のベンチマークからONEBenchへの移行は、(1)不均一性と(2)不完全性という2つの課題をもたらす。
不完全性は、異なるデータサブセットで評価されたモデルの比較を記述している。
これらの課題に対処するために、スパース測定を信頼性のあるモデルスコアに集約するアルゴリズムを探索する。
我々の集約アルゴリズムは、同定可能性(漸近的に基調を回復する)と迅速な収束を保証し、より少ないデータで正確なモデルランキングを可能にする。
均質なデータセットでは, 平均スコアと高い相関関係を持つランキングを, 集約アルゴリズムを用いて提示する。
また、測定結果の95%が欠落しており、モデルランキングのほとんど変更することなく、評価コストを最大20倍に削減できることを示す。
言語モデルのためのONEBench-LLMと、視覚言語モデルのためのONEBench-LMMを導入し、これらの領域における評価を統一する。
全体として,不完全で不均一なサンプルレベルの測定を集約して,急速に発展する基礎モデルとともにベンチマークを継続的に成長させる,オープンエンド評価手法を提案する。
関連論文リスト
- BENCHAGENTS: Automated Benchmark Creation with Agent Interaction [16.4783894348333]
BENCHAGENTSは,大規模言語モデル(LLM)を体系的に活用し,複雑な機能のためのベンチマーク作成を自動化するフレームワークである。
我々は、BENCHAGENTSを用いて、テキスト生成時の計画と制約満足度に関連する機能を評価するベンチマークを作成する。
次に、これらのベンチマークを使用して、7つの最先端モデルを調査し、共通の障害モードとモデルの違いに関する新たな洞察を抽出する。
論文 参考訳(メタデータ) (2024-10-29T22:56:18Z) - Investigating the Impact of Hard Samples on Accuracy Reveals In-class Data Imbalance [4.291589126905706]
AutoMLドメインでは、モデルの有効性を評価するための重要な指標として、テスト精度が宣言される。
しかし、主性能指標としての試験精度の信頼性は疑問視されている。
トレーニングセットとテストセット間のハードサンプルの分布は、これらのセットの難易度に影響を与える。
本稿では,ハードサンプル識別法を比較するためのベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T11:38:14Z) - Data Efficient Evaluation of Large Language Models and Text-to-Image Models via Adaptive Sampling [3.7467864495337624]
SubLIMEはテキスト・ツー・イメージ・モデルのためのデータ効率評価フレームワークである。
我々のアプローチは、完全なデータセットと比較して統計的に整合したモデルランキングを保証する。
HEIMのリーダーボードを利用して、17の異なるベンチマークで25のテキスト・ツー・イメージモデルをカバーしています。
論文 参考訳(メタデータ) (2024-06-21T07:38:55Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - Efficient Failure Pattern Identification of Predictive Algorithms [15.02620042972929]
本稿では,人間のアノテータチームとシーケンシャルレコメンデーションアルゴリズムからなる人間機械協調フレームワークを提案する。
その結果、様々な信号対雑音比で複数のデータセット上でのフレームワークの競合性能を実証的に実証した。
論文 参考訳(メタデータ) (2023-06-01T14:54:42Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - CEREAL: Few-Sample Clustering Evaluation [4.569028973407756]
限られたラベルでクラスタリング品質を推定する未解決の問題に焦点をあてる。
本稿では,少数のクラスタリング評価のための総合的なフレームワークCEREALを紹介する。
その結果,CEREALはサンプリング基準値と比較して絶対誤差曲線下での面積を最大57%削減できることがわかった。
論文 参考訳(メタデータ) (2022-09-30T19:52:41Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
本稿では,選択したサンプルを損失関数として一般化する1対3の学習目標を提案する。
提案した1対3のサンプルは,ReIDトレーニングフレームワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2020-12-10T06:37:09Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。