Artificial Intelligence without Restriction Surpassing Human Intelligence with Probability One: Theoretical Insight into Secrets of the Brain with AI Twins of the Brain
- URL: http://arxiv.org/abs/2412.06820v1
- Date: Wed, 04 Dec 2024 13:17:44 GMT
- Title: Artificial Intelligence without Restriction Surpassing Human Intelligence with Probability One: Theoretical Insight into Secrets of the Brain with AI Twins of the Brain
- Authors: Guang-Bin Huang, M. Brandon Westover, Eng-King Tan, Haibo Wang, Dongshun Cui, Wei-Ying Ma, Tiantong Wang, Qi He, Haikun Wei, Ning Wang, Qiyuan Tian, Kwok-Yan Lam, Xin Yao, Tien Yin Wong,
- Abstract summary: One fundamental question which would affect human sustainability remains open: Will artificial intelligence (AI) evolve to surpass human intelligence in the future?
This paper shows that in theory new AI twins with fresh cellular level of AI techniques for neuroscience could approximate the brain and its functioning systems.
This paper indirectly proves the validity of the conjecture made by Frank Rosenblatt 70 years ago about the potential capabilities of AI.
- Score: 20.956507640605093
- License:
- Abstract: Artificial Intelligence (AI) has apparently become one of the most important techniques discovered by humans in history while the human brain is widely recognized as one of the most complex systems in the universe. One fundamental critical question which would affect human sustainability remains open: Will artificial intelligence (AI) evolve to surpass human intelligence in the future? This paper shows that in theory new AI twins with fresh cellular level of AI techniques for neuroscience could approximate the brain and its functioning systems (e.g. perception and cognition functions) with any expected small error and AI without restrictions could surpass human intelligence with probability one in the end. This paper indirectly proves the validity of the conjecture made by Frank Rosenblatt 70 years ago about the potential capabilities of AI, especially in the realm of artificial neural networks. Intelligence is just one of fortuitous but sophisticated creations of the nature which has not been fully discovered. Like mathematics and physics, with no restrictions artificial intelligence would lead to a new subject with its self-contained systems and principles. We anticipate that this paper opens new doors for 1) AI twins and other AI techniques to be used in cellular level of efficient neuroscience dynamic analysis, functioning analysis of the brain and brain illness solutions; 2) new worldwide collaborative scheme for interdisciplinary teams concurrently working on and modelling different types of neurons and synapses and different level of functioning subsystems of the brain with AI techniques; 3) development of low energy of AI techniques with the aid of fundamental neuroscience properties; and 4) new controllable, explainable and safe AI techniques with reasoning capabilities of discovering principles in nature.
Related papers
- NeuroAI for AI Safety [1.9573653858862774]
Humans are the only known agents capable of general intelligence.
Neuroscience may hold important keys to technical AI safety that are currently underexplored and underutilized.
We highlight and critically evaluate several paths toward AI safety inspired by neuroscience.
arXiv Detail & Related papers (2024-11-27T17:18:51Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - The Nature of Intelligence [0.0]
The essence of intelligence commonly represented by both humans and AI is unknown.
We show that the nature of intelligence is a series of mathematically functional processes that minimize system entropy.
This essay should be a starting point for a deeper understanding of the universe and us as human beings.
arXiv Detail & Related papers (2023-07-20T23:11:59Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z) - Making AI 'Smart': Bridging AI and Cognitive Science [0.0]
With the integration of cognitive science, the 'artificial' characteristic of Artificial Intelligence might soon be replaced with'smart'
This will help develop more powerful AI systems and simultaneously gives us a better understanding of how the human brain works.
We argue that the possibility of AI taking over human civilization is low as developing such an advanced system requires a better understanding of the human brain first.
arXiv Detail & Related papers (2021-12-31T09:30:44Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - To Root Artificial Intelligence Deeply in Basic Science for a New
Generation of AI [1.0152838128195467]
One of the ambitions of artificial intelligence is to root artificial intelligence deeply in basic science.
This paper presents the grand challenges of artificial intelligence research for the next 20 years.
arXiv Detail & Related papers (2020-09-11T22:38:38Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.