Enhancing LLMs for Impression Generation in Radiology Reports through a Multi-Agent System
- URL: http://arxiv.org/abs/2412.06828v1
- Date: Fri, 06 Dec 2024 21:33:03 GMT
- Title: Enhancing LLMs for Impression Generation in Radiology Reports through a Multi-Agent System
- Authors: Fang Zeng, Zhiliang Lyu, Quanzheng Li, Xiang Li,
- Abstract summary: "RadCouncil" is a multi-agent Large Language Model (LLM) framework designed to enhance the generation of impressions in radiology reports from the finding section.
RadCouncil comprises three specialized agents: 1) a "Retrieval" Agent that identifies and retrieves similar reports from a vector database, 2) a "Radiologist" Agent that generates impressions based on the finding section of the given report plus the exemplar reports retrieved by the Retrieval Agent, and 3) a "Reviewer" Agent that evaluates the generated impressions and provides feedback.
- Score: 10.502391082887568
- License:
- Abstract: This study introduces "RadCouncil," a multi-agent Large Language Model (LLM) framework designed to enhance the generation of impressions in radiology reports from the finding section. RadCouncil comprises three specialized agents: 1) a "Retrieval" Agent that identifies and retrieves similar reports from a vector database, 2) a "Radiologist" Agent that generates impressions based on the finding section of the given report plus the exemplar reports retrieved by the Retrieval Agent, and 3) a "Reviewer" Agent that evaluates the generated impressions and provides feedback. The performance of RadCouncil was evaluated using both quantitative metrics (BLEU, ROUGE, BERTScore) and qualitative criteria assessed by GPT-4, using chest X-ray as a case study. Experiment results show improvements in RadCouncil over the single-agent approach across multiple dimensions, including diagnostic accuracy, stylistic concordance, and clarity. This study highlights the potential of utilizing multiple interacting LLM agents, each with a dedicated task, to enhance performance in specialized medical tasks and the development of more robust and adaptable healthcare AI solutions.
Related papers
- Can Modern LLMs Act as Agent Cores in Radiology Environments? [54.36730060680139]
Large language models (LLMs) offer enhanced accuracy and interpretability across various domains.
This paper aims to investigate the pre-requisite question for building concrete radiology agents.
We present RadABench-Data, a comprehensive synthetic evaluation dataset for LLM-based agents.
Second, we propose RadABench-EvalPlat, a novel evaluation platform for agents featuring a prompt-driven workflow.
arXiv Detail & Related papers (2024-12-12T18:20:16Z) - RadPhi-3: Small Language Models for Radiology [3.2515490312812623]
In this work, we present RadPhi-3, a Small Language Model instruction tuned from Phi-3-mini-4k-instruct with 3.8B parameters to assist with various tasks in radiology.
While impression summary generation has been the primary task which has been explored in prior works, we also explore other useful tasks like summary generation comparing the current radiology report and its prior report, section extraction from radiology reports, tagging the reports with various pathologies and tubes, lines or devices present in them etc.
arXiv Detail & Related papers (2024-11-19T11:24:28Z) - Resource-Efficient Medical Report Generation using Large Language Models [3.2627279988912194]
Medical report generation is the task of automatically writing radiology reports for chest X-ray images.
We propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation.
arXiv Detail & Related papers (2024-10-21T05:08:18Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.
It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.
Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
We present an automatic, multi-modal approach for report generation from chest x-ray.
Our approach features two distinct modules: (i) Learned knowledge base and (ii) Multi-modal alignment.
With the aid of both modules, our approach clearly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.