MDiFF: Exploiting Multimodal Score-based Diffusion Models for New Fashion Product Performance Forecasting
- URL: http://arxiv.org/abs/2412.06840v1
- Date: Sat, 07 Dec 2024 07:15:59 GMT
- Title: MDiFF: Exploiting Multimodal Score-based Diffusion Models for New Fashion Product Performance Forecasting
- Authors: Andrea Avogaro, Luigi Capogrosso, Franco Fummi, Marco Cristani,
- Abstract summary: We propose MDiFF: a novel two-step multimodal diffusion models-based pipeline for New Fashion Product Performance Forecasting (NFPPF)
First, we use a score-based diffusion model to predict multiple future sales for different clothes over time. Then, we refine these multiple predictions with a lightweight Multi-layer Perceptron (MLP) to get the final forecast.
- Score: 9.100853455059111
- License:
- Abstract: The fast fashion industry suffers from significant environmental impacts due to overproduction and unsold inventory. Accurately predicting sales volumes for unreleased products could significantly improve efficiency and resource utilization. However, predicting performance for entirely new items is challenging due to the lack of historical data and rapidly changing trends, and existing deterministic models often struggle with domain shifts when encountering items outside the training data distribution. The recently proposed diffusion models address this issue using a continuous-time diffusion process. This allows us to simulate how new items are adopted, reducing the impact of domain shift challenges faced by deterministic models. As a result, in this paper, we propose MDiFF: a novel two-step multimodal diffusion models-based pipeline for New Fashion Product Performance Forecasting (NFPPF). First, we use a score-based diffusion model to predict multiple future sales for different clothes over time. Then, we refine these multiple predictions with a lightweight Multi-layer Perceptron (MLP) to get the final forecast. MDiFF leverages the strengths of both architectures, resulting in the most accurate and efficient forecasting system for the fast-fashion industry at the state-of-the-art. The code can be found at https://github.com/intelligolabs/MDiFF.
Related papers
- Dif4FF: Leveraging Multimodal Diffusion Models and Graph Neural Networks for Accurate New Fashion Product Performance Forecasting [9.100853455059111]
This paper proposes Dif4FF, a novel two-stage pipeline for New Fashion Product Performance Forecasting (NFPPF)
Dif4FF first utilizes a multimodal score-based diffusion model to forecast multiple sales trajectories for various garments over time.
The forecasts are refined using a powerful Graph Convolutional Network (GCN) architecture.
arXiv Detail & Related papers (2024-12-07T07:03:59Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
We propose TSDiff, an unconditionally-trained diffusion model for time series.
Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure.
We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation.
arXiv Detail & Related papers (2023-07-21T10:56:36Z) - Non-autoregressive Conditional Diffusion Models for Time Series
Prediction [3.9722979176564763]
TimeDiff is a non-autoregressive diffusion model that achieves high-quality time series prediction.
We show that TimeDiff consistently outperforms existing time series diffusion models.
arXiv Detail & Related papers (2023-06-08T08:53:59Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Billion-user Customer Lifetime Value Prediction: An Industrial-scale
Solution from Kuaishou [19.31651596803956]
Customer Life Time Value (LTV) is the expected total revenue that a single user can bring to a business.
Modeling LTV is a challenging problem, due to its complex and mutable data distribution.
We introduce an Order Dependency Monotonic Network (ODMN) that models the ordered dependencies between LTVs of different time spans.
arXiv Detail & Related papers (2022-08-29T04:05:21Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - An Exponential Factorization Machine with Percentage Error Minimization
to Retail Sales Forecasting [3.7572675195649623]
This paper proposes a new approach to sales forecasting for new products with long lead time but short product life cycle.
An exponential factorization machine (EFM) sales forecast model is developed to solve this problem.
arXiv Detail & Related papers (2020-09-22T15:21:38Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.