Fully Open Source Moxin-7B Technical Report
- URL: http://arxiv.org/abs/2412.06845v2
- Date: Wed, 11 Dec 2024 19:03:58 GMT
- Title: Fully Open Source Moxin-7B Technical Report
- Authors: Pu Zhao, Xuan Shen, Zhenglun Kong, Yixin Shen, Sung-En Chang, Timothy Rupprecht, Lei Lu, Enfu Nan, Changdi Yang, Yumei He, Xingchen Xu, Yu Huang, Wei Wang, Yue Chen, Yong He, Yanzhi Wang,
- Abstract summary: Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities.
To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed in accordance with the Model Openness Framework (MOF)
Our model achieves the highest MOF classification level of "open science" through the comprehensive release of pre-training code and configurations.
- Score: 38.13392000279939
- License:
- Abstract: Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, and some use restrictive licenses whilst claiming to be "open-source," which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed in accordance with the Model Openness Framework (MOF), a ranked classification system that evaluates AI models based on model completeness and openness, adhering to principles of open science, open source, open data, and open access. Our model achieves the highest MOF classification level of "open science" through the comprehensive release of pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints. Experiments show that our model achieves superior performance in zero-shot evaluation compared with popular 7B models and performs competitively in few-shot evaluation.
Related papers
- Federated In-Context LLM Agent Learning [3.4757641432843487]
Large Language Models (LLMs) have revolutionized intelligent services by enabling logical reasoning, tool use, and interaction with external systems as agents.
In this paper, we propose a novel privacy-preserving Federated In-context LLM Agent Learning (FICAL) algorithm.
The results show that FICAL has competitive performance compared to other SOTA baselines with a significant communication cost decrease of $mathbf3.33times105$ times.
arXiv Detail & Related papers (2024-12-11T03:00:24Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
Large language models (LLMs) have transformed research and practice across a wide range of domains.
We evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments.
arXiv Detail & Related papers (2024-07-05T21:44:11Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
We open-source MAP-Neo, a bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens.
Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs.
arXiv Detail & Related papers (2024-05-29T17:57:16Z) - The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence [0.0]
We introduce the Model Openness Framework (MOF), a three-tiered ranked classification system that rates machine learning models based on their completeness and openness.
For each MOF class, we specify code, data, and documentation components of the model development lifecycle that must be released and under which open licenses.
In addition, the Model Openness Tool (MOT) provides a user-friendly reference implementation to evaluate the openness and completeness of models against the MOF classification system.
arXiv Detail & Related papers (2024-03-20T17:47:08Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LLM360: Towards Fully Transparent Open-Source LLMs [89.05970416013403]
The goal of LLM360 is to support open and collaborative AI research by making the end-to-end training process transparent and reproducible by everyone.
As a first step of LLM360, we release two 7B parameter LLMs pre-trained from scratch, Amber and CrystalCoder, including their training code, data, intermediate checkpoints, and analyses.
arXiv Detail & Related papers (2023-12-11T17:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.