Compression for Better: A General and Stable Lossless Compression Framework
- URL: http://arxiv.org/abs/2412.06868v1
- Date: Mon, 09 Dec 2024 09:55:54 GMT
- Title: Compression for Better: A General and Stable Lossless Compression Framework
- Authors: Boyang Zhang, Daning Cheng, Yunquan Zhang, Fangmin Liu, Wenguang Chen,
- Abstract summary: Key challenge is effectively leveraging compression errors to minimize model loss.
We propose a general textbfLosstextbfLess textbfCompression theoretical framework (textbfLLC)
We apply various compression techniques, including quantization and decomposition.
- Score: 7.356622397575378
- License:
- Abstract: This work focus on how to stabilize and lossless model compression, aiming to reduce model complexity and enhance efficiency without sacrificing performance due to compression errors. A key challenge is effectively leveraging compression errors and defining the boundaries for lossless compression to minimize model loss. i.e., compression for better. Currently, there is no systematic approach to determining this error boundary or understanding its specific impact on model performance. We propose a general \textbf{L}oss\textbf{L}ess \textbf{C}ompression theoretical framework (\textbf{LLC}), which further delineates the compression neighborhood and higher-order analysis boundaries through the total differential, thereby specifying the error range within which a model can be compressed without loss. To verify the effectiveness of LLC, we apply various compression techniques, including quantization and decomposition. Specifically, for quantization, we reformulate the classic quantization search problem as a grouped knapsack problem within the lossless neighborhood, achieving lossless quantization while improving computational efficiency. For decomposition, LLC addresses the approximation problem under low-rank constraints, automatically determining the rank for each layer and producing lossless low-rank models. We conduct extensive experiments on multiple neural network architectures on different datasets. The results show that without fancy tricks, LLC can effectively achieve lossless model compression. Our code will be made publicly.
Related papers
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - Problem-dependent convergence bounds for randomized linear gradient compression [4.656302602746228]
In distributed optimization, the communication model updates can be a performance bottleneck.
gradient compression has been proposed as a means of increasing optimization.
We study how the impact of compression on throughput can be in terms of the norm of the Hessian objective.
arXiv Detail & Related papers (2024-11-19T22:26:42Z) - EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search [33.86918407429272]
We propose a new and general approach for dynamic compression that is provably optimal in a given input range.
We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models.
arXiv Detail & Related papers (2024-10-18T17:46:37Z) - Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
We prove that gradient descent converges to a solution that completely disregards the sparse structure of the input.
We show how to improve upon Gaussian performance for the compression of sparse data by adding a denoising function to a shallow architecture.
We validate our findings on image datasets, such as CIFAR-10 and MNIST.
arXiv Detail & Related papers (2024-02-07T16:32:29Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
We study how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence.
We find that gradients require milder compression rates than activations.
Experiments also show that models trained with TopK perform well only when compression is also applied during inference.
arXiv Detail & Related papers (2024-01-15T15:54:54Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
We propose a post-training model size compression method that combines lossy and lossless compression in a unified way.
Our method can achieve a stable $10times$ compression ratio without sacrificing accuracy and a $20times$ compression ratio with minor accuracy loss in a short time.
arXiv Detail & Related papers (2023-08-08T14:10:16Z) - An Information Theory-inspired Strategy for Automatic Network Pruning [88.51235160841377]
Deep convolution neural networks are well known to be compressed on devices with resource constraints.
Most existing network pruning methods require laborious human efforts and prohibitive computation resources.
We propose an information theory-inspired strategy for automatic model compression.
arXiv Detail & Related papers (2021-08-19T07:03:22Z) - Compressing Neural Networks: Towards Determining the Optimal Layer-wise
Decomposition [62.41259783906452]
We present a novel global compression framework for deep neural networks.
It automatically analyzes each layer to identify the optimal per-layer compression ratio.
Our results open up new avenues for future research into the global performance-size trade-offs of modern neural networks.
arXiv Detail & Related papers (2021-07-23T20:01:30Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
We propose a novel framework for learning $ell_infty$-constrained near-lossless image compression.
We derive the probability model of the quantized residual by quantizing the learned probability model of the original residual.
arXiv Detail & Related papers (2021-03-31T11:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.