論文の概要: Diffusing Differentiable Representations
- arxiv url: http://arxiv.org/abs/2412.06981v1
- Date: Mon, 09 Dec 2024 20:42:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:29.830235
- Title: Diffusing Differentiable Representations
- Title(参考訳): 微分可能表現の拡散
- Authors: Yash Savani, Marc Finzi, J. Zico Kolter,
- Abstract要約: 本稿では,事前学習した拡散モデルを用いて,微分可能な表現(拡散)をサンプリングする,新しい学習自由な手法を提案する。
差分によって引き起こされるサンプルに対する暗黙の制約を特定し、この制約に対処することで、生成されたオブジェクトの一貫性と詳細が大幅に改善されることを示す。
- 参考スコア(独自算出の注目度): 60.72992910766525
- License:
- Abstract: We introduce a novel, training-free method for sampling differentiable representations (diffreps) using pretrained diffusion models. Rather than merely mode-seeking, our method achieves sampling by "pulling back" the dynamics of the reverse-time process--from the image space to the diffrep parameter space--and updating the parameters according to this pulled-back process. We identify an implicit constraint on the samples induced by the diffrep and demonstrate that addressing this constraint significantly improves the consistency and detail of the generated objects. Our method yields diffreps with substantially improved quality and diversity for images, panoramas, and 3D NeRFs compared to existing techniques. Our approach is a general-purpose method for sampling diffreps, expanding the scope of problems that diffusion models can tackle.
- Abstract(参考訳): 本稿では,事前学習した拡散モデルを用いて,微分可能な表現(拡散)をサンプリングする,新しい学習自由な手法を提案する。
本手法は単にモード探索ではなく,画像空間から差分パラメータ空間への逆時間過程のダイナミックスを"プルバック"し,パラメータをこの引き戻しプロセスに従って更新することでサンプリングを実現する。
差分によって引き起こされるサンプルに対する暗黙の制約を特定し、この制約に対処することで、生成されたオブジェクトの一貫性と詳細が大幅に改善されることを示す。
提案手法は,既存の手法と比較して,画像,パノラマ,3D NeRFの画質,多様性を著しく向上した回折値が得られる。
提案手法は,拡散モデルに対処可能な問題の範囲を広げ,拡散をサンプリングする汎用的な手法である。
関連論文リスト
- Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
本研究では,拡散インバージョンに基づく新しい画像超解像(SR)手法を提案する。
本研究では,拡散モデルの中間状態を構築するための部分雑音予測戦略を設計する。
トレーニングが完了すると、このノイズ予測器を使用して、拡散軌道に沿ってサンプリングプロセスを部分的に初期化し、望ましい高分解能結果を生成する。
論文 参考訳(メタデータ) (2024-12-12T07:24:13Z) - Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
拡散モデルは、複雑なデータ分布をモデル化することによって、様々な高品質な画像を生成することができる。
既存の拡散法の多くは拡散逆サンプリングプロセスにデータ一貫性ステップを統合する。
既存の近似は不十分か計算的に非効率であることを示す。
論文 参考訳(メタデータ) (2024-09-13T15:20:03Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
現在の手法では、劣化が知られており、復元と多様性の点で印象的な結果をもたらすと仮定している。
本研究では、これらのモデルの効率を活用し、復元された画像と未知のパラメータを共同で推定する。
本手法は,拡散モデルから抽出したサンプルを用いて,問題の対数類似度を近似し,未知のモデルパラメータを推定する方法とを交互に比較する。
論文 参考訳(メタデータ) (2023-09-01T06:47:13Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
拡散モデルには重要な欠点がある。純粋なガウスノイズから画像を生成するために数千ステップの反復を必要とするため、サンプリングが本質的に遅い。
ガウスノイズから始めることは不要であることを示す。代わりに、より優れた初期化を伴う単一前方拡散から始めると、逆条件拡散におけるサンプリングステップの数を大幅に減少させる。
ComeCloser-DiffuseFaster (CCDF)と呼ばれる新しいサンプリング戦略は、逆問題に対する既存のフィードフォワードニューラルネットワークアプローチが拡散モデルと相乗的に組み合わせられる方法について、新たな洞察を明らかにしている。
論文 参考訳(メタデータ) (2021-12-09T04:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。