Extreme AutoML: Analysis of Classification, Regression, and NLP Performance
- URL: http://arxiv.org/abs/2412.07000v2
- Date: Wed, 11 Dec 2024 15:58:46 GMT
- Title: Extreme AutoML: Analysis of Classification, Regression, and NLP Performance
- Authors: Edward Ratner, Elliot Farmer, Brandon Warner, Christopher Douglas, Amaury Lendasse,
- Abstract summary: Extreme Learning Machines (ELMs) use a fundamentally different type of neural architecture, producing better results at a significantly discounted computational cost.
We benchmark the Extreme AutoML technology against Google's AutoML using several popular classification data sets from the University of California at Irvine's (UCI) repository.
- Score: 0.19791587637442667
- License:
- Abstract: Utilizing machine learning techniques has always required choosing hyperparameters. This is true whether one uses a classical technique such as a KNN or very modern neural networks such as Deep Learning. Though in many applications, hyperparameters are chosen by hand, automated methods have become increasingly more common. These automated methods have become collectively known as automated machine learning, or AutoML. Several automated selection algorithms have shown similar or improved performance over state-of-the-art methods. This breakthrough has led to the development of cloud-based services like Google AutoML, which is based on Deep Learning and is widely considered to be the industry leader in AutoML services. Extreme Learning Machines (ELMs) use a fundamentally different type of neural architecture, producing better results at a significantly discounted computational cost. We benchmark the Extreme AutoML technology against Google's AutoML using several popular classification data sets from the University of California at Irvine's (UCI) repository, and several other data sets, observing significant advantages for Extreme AutoML in accuracy, Jaccard Indices, the variance of Jaccard Indices across classes (i.e. class variance) and training times.
Related papers
- OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Benchmarking AutoML algorithms on a collection of binary problems [3.3793659640122717]
This paper compares the performance of four different AutoML algorithms: Tree-based Pipeline Optimization Tool (TPOT), Auto-Sklearn, Auto-Sklearn 2, and H2O AutoML.
We confirm that AutoML can identify pipelines that perform well on all included datasets.
arXiv Detail & Related papers (2022-12-06T01:53:50Z) - Hyperparameter optimization in deep multi-target prediction [16.778802088570412]
We offer a single AutoML framework for most problem settings that fall under the umbrella of multi-target prediction.
Our work can be seen as the first attempt at offering a single AutoML framework for most problem settings that fall under the umbrella of multi-target prediction.
arXiv Detail & Related papers (2022-11-08T16:33:36Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - AutoGL: A Library for Automated Graph Learning [67.63587865669372]
We present Automated Graph Learning (AutoGL), the first dedicated library for automated machine learning on graphs.
AutoGL is open-source, easy to use, and flexible to be extended.
We also present AutoGL-light, a lightweight version of AutoGL to facilitate customizing pipelines and enriching applications.
arXiv Detail & Related papers (2021-04-11T10:49:23Z) - Naive Automated Machine Learning -- A Late Baseline for AutoML [0.0]
Automated Machine Learning (AutoML) is the problem of automatically finding the pipeline with the best generalization performance on some given dataset.
We present Naive AutoML, a very simple solution to AutoML that exploits important meta-knowledge about machine learning problems.
arXiv Detail & Related papers (2021-03-18T19:52:12Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - Adaptation Strategies for Automated Machine Learning on Evolving Data [7.843067454030999]
This study is to understand the effect of data stream challenges such as concept drift on the performance of AutoML methods.
We propose 6 concept drift adaptation strategies and evaluate their effectiveness on different AutoML approaches.
arXiv Detail & Related papers (2020-06-09T14:29:16Z) - DriveML: An R Package for Driverless Machine Learning [7.004573941239386]
DriveML helps in implementing some of the pillars of an automated machine learning pipeline.
The main benefits of DriveML are in development time savings, reduce developer's errors, optimal tuning of machine learning models and errors.
arXiv Detail & Related papers (2020-05-01T16:40:25Z) - AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data [120.2298620652828]
We introduce AutoGluon-Tabular, an open-source AutoML framework that requires only a single line of Python to train highly accurate machine learning models.
Tests on a suite of 50 classification and regression tasks from Kaggle and the OpenML AutoML Benchmark reveal that AutoGluon is faster, more robust, and much more accurate.
arXiv Detail & Related papers (2020-03-13T23:10:39Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.