Improving the Natural Language Inference robustness to hard dataset by data augmentation and preprocessing
- URL: http://arxiv.org/abs/2412.07108v1
- Date: Tue, 10 Dec 2024 01:49:23 GMT
- Title: Improving the Natural Language Inference robustness to hard dataset by data augmentation and preprocessing
- Authors: Zijiang Yang,
- Abstract summary: Natural Language Inference (NLI) is the task of inferring whether the hypothesis can be justified by the given premise.
We propose the data augmentation and preprocessing methods to solve the word overlap, numerical reasoning and length mismatch problems.
- Score: 1.7487745673871375
- License:
- Abstract: Natural Language Inference (NLI) is the task of inferring whether the hypothesis can be justified by the given premise. Basically, we classify the hypothesis into three labels(entailment, neutrality and contradiction) given the premise. NLI was well studied by the previous researchers. A number of models, especially the transformer based ones, have achieved significant improvement on these tasks. However, it is reported that these models are suffering when they are dealing with hard datasets. Particularly, they perform much worse when dealing with unseen out-of-distribution premise and hypothesis. They may not understand the semantic content but learn the spurious correlations. In this work, we propose the data augmentation and preprocessing methods to solve the word overlap, numerical reasoning and length mismatch problems. These methods are general methods that do not rely on the distribution of the testing data and they help improve the robustness of the models.
Related papers
- Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Automatically Identifying Semantic Bias in Crowdsourced Natural Language
Inference Datasets [78.6856732729301]
We introduce a model-driven, unsupervised technique to find "bias clusters" in a learned embedding space of hypotheses in NLI datasets.
interventions and additional rounds of labeling can be performed to ameliorate the semantic bias of the hypothesis distribution of a dataset.
arXiv Detail & Related papers (2021-12-16T22:49:01Z) - A Generative Approach for Mitigating Structural Biases in Natural
Language Inference [24.44419010439227]
In this work, we reformulate the NLI task as a generative task, where a model is conditioned on the biased subset of the input and the label.
We show that this approach is highly robust to large amounts of bias.
We find that generative models are difficult to train and they generally perform worse than discriminative baselines.
arXiv Detail & Related papers (2021-08-31T17:59:45Z) - Competency Problems: On Finding and Removing Artifacts in Language Data [50.09608320112584]
We argue that for complex language understanding tasks, all simple feature correlations are spurious.
We theoretically analyze the difficulty of creating data for competency problems when human bias is taken into account.
arXiv Detail & Related papers (2021-04-17T21:34:10Z) - Exploring Lexical Irregularities in Hypothesis-Only Models of Natural
Language Inference [5.283529004179579]
Natural Language Inference (NLI) or Recognizing Textual Entailment (RTE) is the task of predicting the entailment relation between a pair of sentences.
Models that understand entailment should encode both, the premise and the hypothesis.
Experiments by Poliak et al. revealed a strong preference of these models towards patterns observed only in the hypothesis.
arXiv Detail & Related papers (2021-01-19T01:08:06Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
This paper presents a number of techniques for making models more robust in the domain of causal reasoning.
We show a statistically significant improvement on performance and on both datasets, even with only a small number of additionally generated data points.
arXiv Detail & Related papers (2021-01-13T09:55:29Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
Existing approaches to improve robustness against dataset biases mostly focus on changing the training objective.
We propose to augment the input sentences in the training data with their corresponding predicate-argument structures.
We show that without targeting a specific bias, our sentence augmentation improves the robustness of transformer models against multiple biases.
arXiv Detail & Related papers (2020-10-23T16:22:05Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z) - HypoNLI: Exploring the Artificial Patterns of Hypothesis-only Bias in
Natural Language Inference [38.14399396661415]
We derive adversarial examples in terms of the hypothesis-only bias.
We investigate two debiasing approaches which exploit the artificial pattern modeling to mitigate such hypothesis-only bias.
arXiv Detail & Related papers (2020-03-05T16:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.