論文の概要: A multimodal ensemble approach for clear cell renal cell carcinoma treatment outcome prediction
- arxiv url: http://arxiv.org/abs/2412.07136v1
- Date: Tue, 10 Dec 2024 02:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:04.527329
- Title: A multimodal ensemble approach for clear cell renal cell carcinoma treatment outcome prediction
- Title(参考訳): クリア細胞腎細胞癌治療結果予測のためのマルチモーダルアンサンブルアプローチ
- Authors: Meixu Chen, Kai Wang, Payal Kapur, James Brugarolas, Raquibul Hannan, Jing Wang,
- Abstract要約: 臨床データ,マルチオミクスデータ,および病理組織学的全スライド画像(WSI)データを統合するマルチモーダルアンサンブルモデル(MMEM)を開発した。
MMEMはccRCC患者の全身生存率(OS)と無病生存率(DFS)を予測した。
- 参考スコア(独自算出の注目度): 6.199310532720352
- License:
- Abstract: Purpose: A reliable cancer prognosis model for clear cell renal cell carcinoma (ccRCC) can enhance personalized treatment. We developed a multi-modal ensemble model (MMEM) that integrates pretreatment clinical data, multi-omics data, and histopathology whole slide image (WSI) data to predict overall survival (OS) and disease-free survival (DFS) for ccRCC patients. Methods: We analyzed 226 patients from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset, which includes OS, DFS follow-up data, and five data modalities: clinical data, WSIs, and three multi-omics datasets (mRNA, miRNA, and DNA methylation). Separate survival models were built for OS and DFS. Cox-proportional hazards (CPH) model with forward feature selection is used for clinical and multi-omics data. Features from WSIs were extracted using ResNet and three general-purpose foundation models. A deep learning-based CPH model predicted survival using encoded WSI features. Risk scores from all models were combined based on training performance. Results: Performance was assessed using concordance index (C-index) and AUROC. The clinical feature-based CPH model received the highest weight for both OS and DFS tasks. Among WSI-based models, the general-purpose foundation model (UNI) achieved the best performance. The final MMEM model surpassed single-modality models, achieving C-indices of 0.820 (OS) and 0.833 (DFS), and AUROC values of 0.831 (3-year patient death) and 0.862 (cancer recurrence). Using predicted risk medians to stratify high- and low-risk groups, log-rank tests showed improved performance in both OS and DFS compared to single-modality models. Conclusion: MMEM is the first multi-modal model for ccRCC patients, integrating five data modalities. It outperformed single-modality models in prognostic ability and has the potential to assist in ccRCC patient management if independently validated.
- Abstract(参考訳): 目的:クリア細胞腎細胞癌(ccRCC)に対する癌予後モデルによりパーソナライズされた治療が促進される。
我々は, ccRCC患者の全身生存率(OS)と無病生存率(DFS)を予測するために, 術前臨床データ, マルチオミクスデータ, 病理組織学的全スライド画像(WSI)データを統合したMMEM(Multi-modal ensemble model)を開発した。
方法: The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) データセットから,OS,DFS追跡データ,臨床データ,WSI,および3つのマルチオミクスデータセット(mRNA,miRNA,DNAメチル化)を含む226例を解析した。
OSとDSS用に別々にサバイバルモデルが製作された。
臨床およびマルチオミクスデータには,前向き特徴選択を伴うコックス確率ハザード(CPH)モデルが用いられている。
WSI の特徴は ResNet と 3 つの汎用基盤モデルを用いて抽出された。
深層学習に基づくCPHモデルは、符号化されたWSI特徴を用いて生存を予測する。
すべてのモデルのリスクスコアは、トレーニングのパフォーマンスに基づいて組み合わせられた。
結果:Concordance Index (C-index) とAUROCを用いて評価した。
臨床的特徴に基づくCPHモデルは,OSおよびDFSタスクにおいて最も重みが高かった。
WSIベースのモデルの中では、汎用ファンデーションモデル(UNI)が最高のパフォーマンスを達成した。
最後のMMEMモデルでは,C指標が0.820(OS),0.833(DFS),AUROC値が0.831(3年),0.862(がん再発)を達成し,単一モダリティモデルを上回った。
リスク中央値を用いて高リスク群と低リスク群の階層化を行い,OS, DFSともに単一モードモデルと比較して高い性能を示した。
結論: MMEMは, ccRCC患者に対する最初のマルチモーダルモデルであり, 5つのデータモダリティを統合する。
予後能力において単一モダリティモデルよりも優れており、独立に検証された場合、ccRCC患者管理を支援する可能性がある。
関連論文リスト
- Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
本研究は,変圧器を用いた深層学習モデルにMR画像,臨床および分子病理学的データを統合することにより,グリオーマの生存率予測を改善することを目的とする。
このモデルは、自己教師付き学習技術を用いて、高次元MRI入力を効果的に符号化し、クロスアテンションを用いた非画像データと統合する。
論文 参考訳(メタデータ) (2024-05-21T17:44:48Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model [5.485361086613949]
非転移性肛門扁平上皮癌(SCC)患者の約30%が化学療法後の再発を経験する
我々は,放射線前処置計画CTから抽出した情報を利用して,CRT後のSCC患者における再発無生存(RFS)を予測するモデルを開発した。
論文 参考訳(メタデータ) (2023-09-05T20:22:26Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
治療後1年間のGBM患者の健康状態を推定する予測モデルを提案する。
総計467名のGBM患者の臨床像を13の特徴と2つの経過日で比較検討した。
GBM患者生存の予後因子のトップ3はMGMT遺伝子プロモーター,切除範囲,年齢であった。
論文 参考訳(メタデータ) (2021-08-30T07:56:34Z) - Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery
Integrating Radiology, Pathology, Genomic, and Clinical Data [0.32622301272834525]
グリオーマ患者の生存率 (OS) を, 深層直交核融合モデルを用いて予測した。
このモデルは、MRI検査、生検に基づくモダリティ、臨床変数から得た情報を総合的なマルチモーダルリスクスコアに組み合わせることを学ぶ。
グリオーマ患者を臨床的サブセット内でOSにより明らかに層分けし、予後不良な臨床グレーディングと分子サブタイプにさらに粒度を付加する。
論文 参考訳(メタデータ) (2021-07-01T17:59:01Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
MODS患者は死亡リスクが高く予後不良である。
本研究は,MODS高齢者の早期死亡予測のための解釈可能・一般化可能なモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2020-01-28T17:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。