論文の概要: MIT-10M: A Large Scale Parallel Corpus of Multilingual Image Translation
- arxiv url: http://arxiv.org/abs/2412.07147v2
- Date: Mon, 16 Dec 2024 09:28:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:06.907309
- Title: MIT-10M: A Large Scale Parallel Corpus of Multilingual Image Translation
- Title(参考訳): MIT-10M:多言語画像翻訳の大規模並列コーパス
- Authors: Bo Li, Shaolin Zhu, Lijie Wen,
- Abstract要約: 実世界のデータから得られた10万以上の画像テキストペアを用いた多言語画像翻訳の大規模並列コーパスであるMIT-10Mを紹介する。
3つのサイズの840Kイメージ、28のカテゴリ、難易度3レベルのタスク、14の言語とテキストのペアが含まれており、既存のデータセットでは大幅に改善されている。
- 参考スコア(独自算出の注目度): 19.068161657967007
- License:
- Abstract: Image Translation (IT) holds immense potential across diverse domains, enabling the translation of textual content within images into various languages. However, existing datasets often suffer from limitations in scale, diversity, and quality, hindering the development and evaluation of IT models. To address this issue, we introduce MIT-10M, a large-scale parallel corpus of multilingual image translation with over 10M image-text pairs derived from real-world data, which has undergone extensive data cleaning and multilingual translation validation. It contains 840K images in three sizes, 28 categories, tasks with three levels of difficulty and 14 languages image-text pairs, which is a considerable improvement on existing datasets. We conduct extensive experiments to evaluate and train models on MIT-10M. The experimental results clearly indicate that our dataset has higher adaptability when it comes to evaluating the performance of the models in tackling challenging and complex image translation tasks in the real world. Moreover, the performance of the model fine-tuned with MIT-10M has tripled compared to the baseline model, further confirming its superiority.
- Abstract(参考訳): 画像翻訳(IT)は、様々な領域にわたって大きな可能性を秘めており、画像内のテキストコンテンツを様々な言語に翻訳することができる。
しかし、既存のデータセットは、しばしばスケール、多様性、品質の制限に悩まされ、ITモデルの開発と評価を妨げる。
この問題に対処するため,実世界のデータから得られた10万以上の画像テキストペアを用いた多言語画像翻訳の大規模並列コーパスであるMIT-10Mを導入し,広範囲なデータクリーニングと多言語翻訳検証を行った。
3つのサイズの840Kイメージ、28のカテゴリ、難易度3レベルのタスク、14の言語とテキストのペアが含まれており、既存のデータセットでは大幅に改善されている。
我々は、MIT-10Mでモデルの評価と訓練を行う広範囲な実験を行っている。
実験結果から,実世界の課題や複雑な画像翻訳タスクに対処する際のモデルの性能評価において,我々のデータセットは高い適応性を有することが明らかとなった。
さらに、MIT-10Mで微調整されたモデルの性能はベースラインモデルに比べて3倍に向上し、その優位性も確認されている。
関連論文リスト
- OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text [112.60163342249682]
我々は100億規模の画像テキストインターリーブデータセットであるOmniCorpusを紹介する。
私たちのデータセットは、優れたデータ品質を維持しながら、15倍のスケールを持っています。
これが将来のマルチモーダルモデル研究に確かなデータ基盤を提供することを期待しています。
論文 参考訳(メタデータ) (2024-06-12T17:01:04Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - 3AM: An Ambiguity-Aware Multi-Modal Machine Translation Dataset [90.95948101052073]
英語と中国語で26,000のパラレル文対からなる曖昧性を考慮したMMTデータセットである3AMを導入する。
我々のデータセットは、他のMTデータセットよりもあいまいで、キャプションと画像の両方が多種多様であるように設計されています。
実験の結果,我々のデータセットでトレーニングしたMTモデルは,他のMTデータセットでトレーニングしたMTモデルよりも視覚情報を活用する能力が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-29T04:01:30Z) - Exploring Better Text Image Translation with Multimodal Codebook [39.12169843196739]
テキスト画像翻訳(TIT)は、画像に埋め込まれたソーステキストをターゲット翻訳に変換することを目的としている。
本研究ではまず,中国語のTITデータセットOCRMT30Kに注釈を付け,その後の研究に便宜を提供する。
そこで本研究では,画像と関連するテキストを関連付けることができるマルチモーダルコードブックを用いたTITモデルを提案する。
本稿では,テキスト機械翻訳,画像テキストアライメント,TITタスクを含む多段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-27T08:41:18Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
マルチモーダル機械翻訳は、視覚などの他のモーダルからの情報を取り入れることで、翻訳品質を向上させることを目的としている。
従来のMMTシステムは主に視覚情報へのアクセスと利用に重点を置いており、画像関連データセット上でそれらの手法を検証する傾向がある。
本稿では,MTのための新しい手法と新しいデータセットを確立する。
論文 参考訳(メタデータ) (2022-12-20T15:02:38Z) - WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual
Machine Learning [19.203716881791312]
ウィキペディアベースの画像テキスト(WIT)データセットを紹介する。
witは3760万のエンティティリッチな画像テキスト例のキュレーションセットで構成されており、108のwikipedia言語で1150万のユニークな画像がある。
WITは3倍の画像-テキストサンプル数で最大のマルチモーダルデータセットです。
論文 参考訳(メタデータ) (2021-03-02T18:13:54Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。