Multi-Scale Contrastive Learning for Video Temporal Grounding
- URL: http://arxiv.org/abs/2412.07157v2
- Date: Thu, 19 Dec 2024 00:53:53 GMT
- Title: Multi-Scale Contrastive Learning for Video Temporal Grounding
- Authors: Thong Thanh Nguyen, Yi Bin, Xiaobao Wu, Zhiyuan Hu, Cong-Duy T Nguyen, See-Kiong Ng, Anh Tuan Luu,
- Abstract summary: Temporal grounding, which localizes video moments related to a natural language query, is a core problem of vision-language learning and video understanding.
We propose a contrastive learning framework to capture salient semantics among video moments.
- Score: 42.180296672043404
- License:
- Abstract: Temporal grounding, which localizes video moments related to a natural language query, is a core problem of vision-language learning and video understanding. To encode video moments of varying lengths, recent methods employ a multi-level structure known as a feature pyramid. In this structure, lower levels concentrate on short-range video moments, while higher levels address long-range moments. Because higher levels experience downsampling to accommodate increasing moment length, their capacity to capture information is reduced and consequently leads to degraded information in moment representations. To resolve this problem, we propose a contrastive learning framework to capture salient semantics among video moments. Our key methodology is to leverage samples from the feature space emanating from multiple stages of the video encoder itself requiring neither data augmentation nor online memory banks to obtain positive and negative samples. To enable such an extension, we introduce a sampling process to draw multiple video moments corresponding to a common query. Subsequently, by utilizing these moments' representations across video encoder layers, we instantiate a novel form of multi-scale and cross-scale contrastive learning that links local short-range video moments with global long-range video moments. Extensive experiments demonstrate the effectiveness of our framework for not only long-form but also short-form video grounding.
Related papers
- LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking [33.75267864844047]
Video Object (VOS) has emerged as an increasingly important problem with availability of larger datasets and more complex and realistic settings.
We propose a novel, clip-based DETR-style encoder-decoder architecture, which focuses on systematically analyzing and addressing aforementioned challenges.
Specifically, we propose a novel transformation-aware loss that focuses learning on portions of the video where an object undergoes significant deformations.
arXiv Detail & Related papers (2023-12-13T21:02:03Z) - Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for
Long-form Video Understanding [57.917616284917756]
Real-world videos are often several minutes long with semantically consistent segments of variable length.
A common approach to process long videos is applying a short-form video model over uniformly sampled clips of fixed temporal length.
This approach neglects the underlying nature of long videos since fixed-length clips are often redundant or uninformative.
arXiv Detail & Related papers (2023-09-20T18:13:32Z) - Generating Long Videos of Dynamic Scenes [66.56925105992472]
We present a video generation model that reproduces object motion, changes in camera viewpoint, and new content that arises over time.
A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency.
arXiv Detail & Related papers (2022-06-07T16:29:51Z) - Beyond Short Clips: End-to-End Video-Level Learning with Collaborative
Memories [56.91664227337115]
We introduce a collaborative memory mechanism that encodes information across multiple sampled clips of a video at each training iteration.
This enables the learning of long-range dependencies beyond a single clip.
Our proposed framework is end-to-end trainable and significantly improves the accuracy of video classification at a negligible computational overhead.
arXiv Detail & Related papers (2021-04-02T18:59:09Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.