論文の概要: Crack-EdgeSAM Self-Prompting Crack Segmentation System for Edge Devices
- arxiv url: http://arxiv.org/abs/2412.07205v1
- Date: Tue, 10 Dec 2024 05:50:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:37:56.776514
- Title: Crack-EdgeSAM Self-Prompting Crack Segmentation System for Edge Devices
- Title(参考訳): エッジデバイス用クラック・エッジSAMセルフプロンピング・クラック・セグメンテーションシステム
- Authors: Yingchu Wang, Ji He, Shijie Yu,
- Abstract要約: Crack-EdgeSAMは、プロンプトボックスを生成するためにYOLOv8を統合するセルフプロンプトクラックセグメンテーションシステムである。
このシステムは1024×1024ピクセルの画像を、私たちのPC上で46FPS、Jetson Orin Nanoで8FPSで処理します。
- 参考スコア(独自算出の注目度): 5.051837985130048
- License:
- Abstract: Structural health monitoring (SHM) is essential for the early detection of infrastructure defects, such as cracks in concrete bridge pier. but often faces challenges in efficiency and accuracy in complex environments. Although the Segment Anything Model (SAM) achieves excellent segmentation performance, its computational demands limit its suitability for real-time applications on edge devices. To address these challenges, this paper proposes Crack-EdgeSAM, a self-prompting crack segmentation system that integrates YOLOv8 for generating prompt boxes and a fine-tuned EdgeSAM model for crack segmentation. To ensure computational efficiency, the method employs ConvLoRA, a Parameter-Efficient Fine-Tuning (PEFT) technique, along with DiceFocalLoss to fine-tune the EdgeSAM model. Our experimental results on public datasets and the climbing robot automatic inspections demonstrate that the system achieves high segmentation accuracy and significantly enhanced inference speed compared to the most recent methods. Notably, the system processes 1024 x 1024 pixels images at 46 FPS on our PC and 8 FPS on Jetson Orin Nano.
- Abstract(参考訳): 構造物の健全性モニタリング(SHM)は,コンクリート橋脚の亀裂などのインフラ欠陥の早期発見に不可欠である。
複雑な環境では 効率と正確さの課題に直面します
Segment Anything Model (SAM) はセグメンテーション性能が優れているが、その計算要求はエッジデバイス上のリアルタイムアプリケーションに適していることを制限している。
これらの課題に対処するために, YOLOv8 を利用してプロンプトボックスを生成するセルフプロンプトクラックセグメンテーションシステムである Crack-EdgeSAM と, き裂セグメンテーションのための微調整EdgeSAM モデルを提案する。
計算効率を確保するために、パラメータ効率の良い微細チューニング(PEFT)技術であるConvLoRAとDiceFocalLossを用いてEdgeSAMモデルを微調整する。
公開データセットとクライミングロボットによる自動検査実験の結果,最新の手法と比較して高いセグメンテーション精度と推論速度の向上が得られた。
特に、このシステムはPC上で46FPS、Jetson Orin Nanoで8FPSで1024×1024ピクセルの画像を処理しています。
関連論文リスト
- Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
本稿では、シーンを駆動するための新しい単一ステージオブジェクト検出フレームワークであるFast-COSを紹介する。
RAViTはImageNet-1Kデータセットで81.4%のTop-1精度を達成した。
主要なモデルの効率を上回り、最大75.9%のGPU推論速度とエッジデバイスでの1.38のスループットを提供する。
論文 参考訳(メタデータ) (2025-02-11T09:54:09Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
異常セグメンテーションのための textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) 法を提案する。
SPT法は, 自己描画型チューニング戦略を取り入れ, 異常マスクの初期粗いドラフトを生成し, 精製処理を行う。
論文 参考訳(メタデータ) (2024-11-26T08:33:25Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - EfficientCrackNet: A Lightweight Model for Crack Segmentation [1.3689715712707347]
き裂検出は、建物、舗装、橋の構造的整合性を維持するために不可欠である。
既存の軽量な手法は、計算の非効率性、複雑な亀裂パターン、難易度などの課題に直面していることが多い。
本稿では,CNN(Convolutional Neural Networks)とトランスフォーマーを組み合わせた軽量ハイブリッドモデルであるEfficientCrackNetを提案する。
論文 参考訳(メタデータ) (2024-09-26T17:44:20Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - Augmenting Efficient Real-time Surgical Instrument Segmentation in Video with Point Tracking and Segment Anything [9.338136334709818]
手術器具のセグメンテーションを微調整した軽量SAMモデルとオンラインポイントトラッカーを組み合わせた新しいフレームワークを提案する。
関心領域内のスパースポイントが追跡され、SAMをビデオシーケンス全体を通してプロンプトし、時間的一貫性を提供する。
提案手法は,XMemとトランスフォーマーをベースとした完全教師付きセグメンテーション手法に匹敵する有望な性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T18:12:42Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [73.06322749886483]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
これらすべての提案手法により、TinySAMは計算量を大幅に削減し、エンベロープを効率的なセグメント化タスクにプッシュする。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - Keyword Spotting System and Evaluation of Pruning and Quantization
Methods on Low-power Edge Microcontrollers [7.570300579676175]
キーワードスポッティング(KWS)は、エッジの低消費電力デバイスとの音声ベースのユーザインタラクションに有用である。
本稿では,Cortex-M7コア@216MHzと512KBの静的RAMを備えたSTM32F7マイクロコントローラ上で動作するKWSシステムについて述べる。
論文 参考訳(メタデータ) (2022-08-04T16:49:45Z) - RHA-Net: An Encoder-Decoder Network with Residual Blocks and Hybrid
Attention Mechanisms for Pavement Crack Segmentation [7.972704288200679]
RHA-Netは、残余ブロック(ResBlocks)とハイブリッドアテンションブロックをエンコーダ・デコーダアーキテクチャに統合することで構築される。
組込みデバイスJetson TX2(25FPS)上で,舗装クラックをリアルタイムで分割するシステムを開発した。
論文 参考訳(メタデータ) (2022-07-28T15:26:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。