論文の概要: CrackESS: A Self-Prompting Crack Segmentation System for Edge Devices
- arxiv url: http://arxiv.org/abs/2412.07205v3
- Date: Tue, 11 Mar 2025 12:55:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:39:52.738306
- Title: CrackESS: A Self-Prompting Crack Segmentation System for Edge Devices
- Title(参考訳): CrackESS:エッジデバイスのためのセルフプロンピングクラックセグメンテーションシステム
- Authors: Yingchu Wang, Ji He, Shijie Yu,
- Abstract要約: 本稿では,コンクリートひび割れの検出・分断を行う新しいシステムであるCrackESSを紹介する。
我々は,3つのデータセット(Khanhhaのデータセット,Crack500,CrackCR)で実験を行い,登山ロボットシステムにおけるCrackESSの有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 5.051837985130048
- License:
- Abstract: Structural Health Monitoring (SHM) is a sustainable and essential approach for infrastructure maintenance, enabling the early detection of structural defects. Leveraging computer vision (CV) methods for automated infrastructure monitoring can significantly enhance monitoring efficiency and precision. However, these methods often face challenges in efficiency and accuracy, particularly in complex environments. Recent CNN-based and SAM-based approaches have demonstrated excellent performance in crack segmentation, but their high computational demands limit their applicability on edge devices. This paper introduces CrackESS, a novel system for detecting and segmenting concrete cracks. The approach first utilizes a YOLOv8 model for self-prompting and a LoRA-based fine-tuned SAM model for crack segmentation, followed by refining the segmentation masks through the proposed Crack Mask Refinement Module (CMRM). We conduct experiments on three datasets(Khanhha's dataset, Crack500, CrackCR) and validate CrackESS on a climbing robot system to demonstrate the advantage and effectiveness of our approach.
- Abstract(参考訳): 構造的健康モニタリング(SHM)は、インフラメンテナンスにおいて持続的で不可欠なアプローチであり、構造的欠陥の早期発見を可能にする。
自動化されたインフラストラクチャ監視のためのコンピュータビジョン(CV)手法を活用することで、監視効率と精度を大幅に向上させることができる。
しかし、これらの手法は、特に複雑な環境では、効率と精度の面で課題に直面していることが多い。
最近のCNNベースおよびSAMベースのアプローチは、クラックセグメンテーションにおいて優れた性能を示しているが、その高い計算要求はエッジデバイスへの適用性を制限している。
本稿では,コンクリートひび割れの検出・分断を行う新しいシステムであるCrackESSを紹介する。
このアプローチはまず、自己プロンピングにYOLOv8モデルとLoRAベースの細調整SAMモデルを使用し、続いて、提案されたクラックマスクリファインメントモジュール(CMRM)を介してセグメンテーションマスクを精錬する。
我々は,3つのデータセット(Khanhhaのデータセット,Crack500,CrackCR)で実験を行い,登山ロボットシステムにおけるCrackESSの有効性と有効性を示す。
関連論文リスト
- Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
本稿では、シーンを駆動するための新しい単一ステージオブジェクト検出フレームワークであるFast-COSを紹介する。
RAViTはImageNet-1Kデータセットで81.4%のTop-1精度を達成した。
主要なモデルの効率を上回り、最大75.9%のGPU推論速度とエッジデバイスでの1.38のスループットを提供する。
論文 参考訳(メタデータ) (2025-02-11T09:54:09Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
異常セグメンテーションのための textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) 法を提案する。
SPT法は, 自己描画型チューニング戦略を取り入れ, 異常マスクの初期粗いドラフトを生成し, 精製処理を行う。
論文 参考訳(メタデータ) (2024-11-26T08:33:25Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - EfficientCrackNet: A Lightweight Model for Crack Segmentation [1.3689715712707347]
き裂検出は、建物、舗装、橋の構造的整合性を維持するために不可欠である。
既存の軽量な手法は、計算の非効率性、複雑な亀裂パターン、難易度などの課題に直面していることが多い。
本稿では,CNN(Convolutional Neural Networks)とトランスフォーマーを組み合わせた軽量ハイブリッドモデルであるEfficientCrackNetを提案する。
論文 参考訳(メタデータ) (2024-09-26T17:44:20Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - Augmenting Efficient Real-time Surgical Instrument Segmentation in Video with Point Tracking and Segment Anything [9.338136334709818]
手術器具のセグメンテーションを微調整した軽量SAMモデルとオンラインポイントトラッカーを組み合わせた新しいフレームワークを提案する。
関心領域内のスパースポイントが追跡され、SAMをビデオシーケンス全体を通してプロンプトし、時間的一貫性を提供する。
提案手法は,XMemとトランスフォーマーをベースとした完全教師付きセグメンテーション手法に匹敵する有望な性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T18:12:42Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [73.06322749886483]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
これらすべての提案手法により、TinySAMは計算量を大幅に削減し、エンベロープを効率的なセグメント化タスクにプッシュする。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - Keyword Spotting System and Evaluation of Pruning and Quantization
Methods on Low-power Edge Microcontrollers [7.570300579676175]
キーワードスポッティング(KWS)は、エッジの低消費電力デバイスとの音声ベースのユーザインタラクションに有用である。
本稿では,Cortex-M7コア@216MHzと512KBの静的RAMを備えたSTM32F7マイクロコントローラ上で動作するKWSシステムについて述べる。
論文 参考訳(メタデータ) (2022-08-04T16:49:45Z) - RHA-Net: An Encoder-Decoder Network with Residual Blocks and Hybrid
Attention Mechanisms for Pavement Crack Segmentation [7.972704288200679]
RHA-Netは、残余ブロック(ResBlocks)とハイブリッドアテンションブロックをエンコーダ・デコーダアーキテクチャに統合することで構築される。
組込みデバイスJetson TX2(25FPS)上で,舗装クラックをリアルタイムで分割するシステムを開発した。
論文 参考訳(メタデータ) (2022-07-28T15:26:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。