論文の概要: Learnable Sparse Customization in Heterogeneous Edge Computing
- arxiv url: http://arxiv.org/abs/2412.07216v1
- Date: Tue, 10 Dec 2024 06:14:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:35:37.846783
- Title: Learnable Sparse Customization in Heterogeneous Edge Computing
- Title(参考訳): 不均一エッジコンピューティングにおける学習可能なスパースカスタマイズ
- Authors: Jingjing Xue, Sheng Sun, Min Liu, Yuwei Wang, Zhuotao Liu, Jingyuan Wang,
- Abstract要約: 異種フェデレート学習(FedLPS)のための学習可能なパーソナライズ・スパシフィケーションを提案する。
FedLPSは、局所データ表現におけるモデルユニットの重要性を学び、パーソナライズされたデータ特徴を正確に抽出するために、最小限の重要度に基づくスパースパターンを導出する。
実験により、FedLPSは精度とトレーニングコストにおいてステータスクオアプローチよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 27.201987866208484
- License:
- Abstract: To effectively manage and utilize massive distributed data at the network edge, Federated Learning (FL) has emerged as a promising edge computing paradigm across data silos. However, FL still faces two challenges: system heterogeneity (i.e., the diversity of hardware resources across edge devices) and statistical heterogeneity (i.e., non-IID data). Although sparsification can extract diverse submodels for diverse clients, most sparse FL works either simply assign submodels with artificially-given rigid rules or prune partial parameters using heuristic strategies, resulting in inflexible sparsification and poor performance. In this work, we propose Learnable Personalized Sparsification for heterogeneous Federated learning (FedLPS), which achieves the learnable customization of heterogeneous sparse models with importance-associated patterns and adaptive ratios to simultaneously tackle system and statistical heterogeneity. Specifically, FedLPS learns the importance of model units on local data representation and further derives an importance-based sparse pattern with minimal heuristics to accurately extract personalized data features in non-IID settings. Furthermore, Prompt Upper Confidence Bound Variance (P-UCBV) is designed to adaptively determine sparse ratios by learning the superimposed effect of diverse device capabilities and non-IID data, aiming at resource self-adaptation with promising accuracy. Extensive experiments show that FedLPS outperforms status quo approaches in accuracy and training costs, which improves accuracy by 1.28%-59.34% while reducing running time by more than 68.80%.
- Abstract(参考訳): ネットワークエッジにおける大規模分散データを効果的に管理し、活用するために、フェデレートラーニング(FL)は、データサイロ間の有望なエッジコンピューティングパラダイムとして登場した。
しかし、FLはシステム異質性(エッジデバイス間のハードウェアリソースの多様性)と統計異質性(非IIDデータ)という2つの課題に直面している。
スパーシフィケーションは多様なクライアントのための多様なサブモデルを抽出することができるが、ほとんどのスパースFLは、単に人工的に与えられた厳密な規則を持つサブモデルを割り当てるか、ヒューリスティック戦略を用いてプルー部分パラメータを割り当てるだけで、柔軟性のないスパーシフィケーションと性能の低下をもたらす。
本研究では,不均一なフェデレーション学習のための学習可能なパーソナライズ・スパシフィケーション(FedLPS)を提案する。
具体的には、FedLPSは、局所データ表現におけるモデルユニットの重要性を学び、さらに、最小限のヒューリスティックを持つ重要に基づくスパースパターンを導出し、非IID設定でパーソナライズされたデータ特徴を正確に抽出する。
さらに,P-UCBV(Prompt Upper Confidence Bound Variance)は,多種多様なデバイス能力と非IIDデータの重畳効果を学習し,資源自己適応を期待できる精度で,スパース比を適応的に決定するように設計されている。
大規模な実験では、FedLPSは精度とトレーニングコストにおいてステータスクオのアプローチよりも優れており、精度は1.28%-59.34%向上し、ランニングタイムは68.80%以上削減されている。
関連論文リスト
- Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local
Parameter Sharing [14.938531944702193]
局所異種共有を用いたフェデレーション学習(FedLPS)を提案する。
FedLPSは転送学習を使用して、ローカルモデルを共有エンコーダとタスク固有のエンコーダに分割することで、複数のタスクをひとつのデバイスにデプロイする。
FedLPSは最先端(SOTA)のFLフレームワークを最大4.88%上回り、計算資源消費量を21.3%減らす。
論文 参考訳(メタデータ) (2024-02-13T16:30:30Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Auxo: Efficient Federated Learning via Scalable Client Clustering [22.323057948281644]
フェデレートラーニング(FL)は、論理的に集中したサーバに生データを公開せずに、エッジデバイスが協調的にMLモデルをトレーニングすることを可能にする。
統計的に類似したデータ分布(コホート)を持つクライアントを,大規模・低可用性・資源制約のFL群で段階的に識別するAuxoを提案する。
Auxoは最終的な精度(2.1% - 8.2%)、収束時間(2.2倍)、モデルバイアス(4.8% - 53.8%)の点で、様々な既存のFLソリューションを強化している。
論文 参考訳(メタデータ) (2022-10-29T17:36:51Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning(FL)は、エッジデバイスによる大規模データの分散処理のための新興フレームワークである。
本稿では,FLAD FedADMMに基づく新しいプロトコルを提案する。
我々は,FedADMMが通信効率の点で,すべてのベースライン手法を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-07T15:58:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Genetic CFL: Optimization of Hyper-Parameters in Clustered Federated
Learning [4.710427287359642]
Federated Learning(FL)は、クライアントサーバアーキテクチャ、エッジコンピューティング、リアルタイムインテリジェンスを統合した、ディープラーニングのための分散モデルである。
FLは機械学習(ML)に革命を起こす能力を持っているが、技術的制限、通信オーバーヘッド、非IID(独立で同一の分散データ)、プライバシー上の懸念による実装の実践性に欠ける。
本稿では,遺伝的クラスタ化FL(Genetic CFL)と呼ばれるハイブリッドアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-15T10:16:05Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。